These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 28192391)
1. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Abbott J; Ye T; Qin L; Jorgolli M; Gertner RS; Ham D; Park H Nat Nanotechnol; 2017 May; 12(5):460-466. PubMed ID: 28192391 [TBL] [Abstract][Full Text] [Related]
2. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology. Abbott J; Ye T; Ham D; Park H Acc Chem Res; 2018 Mar; 51(3):600-608. PubMed ID: 29437381 [TBL] [Abstract][Full Text] [Related]
3. Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Huys R; Braeken D; Jans D; Stassen A; Collaert N; Wouters J; Loo J; Severi S; Vleugels F; Callewaert G; Verstreken K; Bartic C; Eberle W Lab Chip; 2012 Apr; 12(7):1274-80. PubMed ID: 22337001 [TBL] [Abstract][Full Text] [Related]
4. The Design of a CMOS Nanoelectrode Array with 4096 Current-Clamp/Voltage-Clamp Amplifiers for Intracellular Recording/Stimulation of Mammalian Neurons. Abbott J; Ye T; Krenek K; Qin L; Kim Y; Wu W; Gertner RS; Park H; Ham D IEEE J Solid-State Circuits; 2020 Sep; 55(9):2567-2582. PubMed ID: 33762776 [TBL] [Abstract][Full Text] [Related]
5. Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Dipalo M; Melle G; Lovato L; Jacassi A; Santoro F; Caprettini V; Schirato A; Alabastri A; Garoli D; Bruno G; Tantussi F; De Angelis F Nat Nanotechnol; 2018 Oct; 13(10):965-971. PubMed ID: 30104618 [TBL] [Abstract][Full Text] [Related]
6. Intracellular cardiomyocytes potential recording by planar electrode array and fibroblasts co-culturing on multi-modal CMOS chip. Park JS; Grijalva SI; Jung D; Li S; Junek GV; Chi T; Cho HC; Wang H Biosens Bioelectron; 2019 Nov; 144():111626. PubMed ID: 31494510 [TBL] [Abstract][Full Text] [Related]
7. Action potential-based MEA platform for in vitro screening of drug-induced cardiotoxicity using human iPSCs and rat neonatal myocytes. Jans D; Callewaert G; Krylychkina O; Hoffman L; Gullo F; Prodanov D; Braeken D J Pharmacol Toxicol Methods; 2017 Sep; 87():48-52. PubMed ID: 28549786 [TBL] [Abstract][Full Text] [Related]
8. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Lin ZC; Xie C; Osakada Y; Cui Y; Cui B Nat Commun; 2014; 5():3206. PubMed ID: 24487777 [TBL] [Abstract][Full Text] [Related]
9. Scalable and Robust Hollow Nanopillar Electrode for Enhanced Intracellular Action Potential Recording. Fang J; Xu D; Wang H; Wu J; Li Y; Yang T; Liu C; Hu N Nano Lett; 2023 Jan; 23(1):243-251. PubMed ID: 36537828 [TBL] [Abstract][Full Text] [Related]
10. Intracellular levels of Na(+) and TTX-sensitive Na(+) channel current in diabetic rat ventricular cardiomyocytes. Bilginoglu A; Kandilci HB; Turan B Cardiovasc Toxicol; 2013 Jun; 13(2):138-47. PubMed ID: 23225150 [TBL] [Abstract][Full Text] [Related]
11. Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure. Lindner M; Brandt MC; Sauer H; Hescheler J; Böhle T; Beuckelmann DJ Cell Calcium; 2002 Apr; 31(4):175-82. PubMed ID: 12027382 [TBL] [Abstract][Full Text] [Related]
12. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening. Park JS; Aziz MK; Li S; Chi T; Grijalva SI; Sung JH; Cho HC; Wang H IEEE Trans Biomed Circuits Syst; 2018 Feb; 12(1):80-94. PubMed ID: 29377798 [TBL] [Abstract][Full Text] [Related]
13. Synchronized intracellular and extracellular recording of action potentials by three-dimensional nanoroded electroporation. Xu D; Fang J; Zhang M; Wang H; Zhang T; Hang T; Xie X; Hu N Biosens Bioelectron; 2021 Nov; 192():113501. PubMed ID: 34273736 [TBL] [Abstract][Full Text] [Related]
14. Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array. Abbott J; Ye T; Krenek K; Gertner RS; Wu W; Jung HS; Ham D; Park H Lab Chip; 2020 Aug; 20(17):3239-3248. PubMed ID: 32756639 [TBL] [Abstract][Full Text] [Related]
15. Intracellular recording of cardiomyocyte action potentials by nanobranched microelectrode array. Hu N; Xu D; Fang J; Li H; Mo J; Zhou M; Li B; Chen HJ; Zhang T; Feng J; Hang T; Xia W; Chen X; Liu X; He G; Xie X Biosens Bioelectron; 2020 Dec; 169():112588. PubMed ID: 32956905 [TBL] [Abstract][Full Text] [Related]
16. Porous Polyethylene Terephthalate Nanotemplate Electrodes for Sensitive Intracellular Recording of Action Potentials. Xu D; Fang J; Zhang M; Xia Q; Li H; Hu N Nano Lett; 2022 Mar; 22(6):2479-2489. PubMed ID: 35254073 [TBL] [Abstract][Full Text] [Related]
17. Development of a high-throughput assay for monitoring cAMP levels in cardiac ventricular myocytes. Walsh KB; Rich TC; Coffman ZJ J Cardiovasc Pharmacol; 2009 Mar; 53(3):223-30. PubMed ID: 19247193 [TBL] [Abstract][Full Text] [Related]
18. A CMOS-based microelectrode array for interaction with neuronal cultures. Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452 [TBL] [Abstract][Full Text] [Related]
19. Cell recordings with a CMOS high-density microelectrode array. Frey U; Sanchez-Bustamante CD; Ugniwenko T; Heer F; Sedivy J; Hafizovic S; Roscic B; Fussenegger M; Blau A; Egert U; Hierlemann A Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():167-70. PubMed ID: 18001915 [TBL] [Abstract][Full Text] [Related]
20. Meeting review: cardiomyocyte regeneration and protection, La Jolla, California, June 2011. Mercola M; Doevendans P J Cardiovasc Transl Res; 2012 Feb; 5(1):100-5. PubMed ID: 22057688 [No Abstract] [Full Text] [Related] [Next] [New Search]