These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 28192458)
1. Transcriptome analysis of hexaploid hulless oat in response to salinity stress. Wu B; Hu Y; Huo P; Zhang Q; Chen X; Zhang Z PLoS One; 2017; 12(2):e0171451. PubMed ID: 28192458 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress. Zhang X; Liao M; Chang D; Zhang F BMC Res Notes; 2014 Dec; 7():927. PubMed ID: 25515859 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the alfalfa root transcriptome in response to salinity stress. Postnikova OA; Shao J; Nemchinov LG Plant Cell Physiol; 2013 Jul; 54(7):1041-55. PubMed ID: 23592587 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. Hiz MC; Canher B; Niron H; Turet M PLoS One; 2014; 9(3):e92598. PubMed ID: 24651267 [TBL] [Abstract][Full Text] [Related]
6. Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress. Wu B; Munkhtuya Y; Li J; Hu Y; Zhang Q; Zhang Z Sci Rep; 2018 Nov; 8(1):16248. PubMed ID: 30389990 [TBL] [Abstract][Full Text] [Related]
7. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. Molina C; Zaman-Allah M; Khan F; Fatnassi N; Horres R; Rotter B; Steinhauer D; Amenc L; Drevon JJ; Winter P; Kahl G BMC Plant Biol; 2011 Feb; 11():31. PubMed ID: 21320317 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome Profiling of Beach Morning Glory (Ipomoea imperati) under Salinity and Its Comparative Analysis with Sweetpotato. Solis J; Baisakh N; Brandt SR; Villordon A; La Bonte D PLoS One; 2016; 11(2):e0147398. PubMed ID: 26848754 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. Bedre R; Mangu VR; Srivastava S; Sanchez LE; Baisakh N BMC Genomics; 2016 Aug; 17(1):657. PubMed ID: 27542721 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings. Song Q; Joshi M; Joshi V Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32839408 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress. Guo J; Shi G; Guo X; Zhang L; Xu W; Wang Y; Su Z; Hua J Plant Sci; 2015 Sep; 238():33-45. PubMed ID: 26259172 [TBL] [Abstract][Full Text] [Related]
12. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Kashyap SP; Prasanna HC; Kumari N; Mishra P; Singh B Sci Rep; 2020 Sep; 10(1):15835. PubMed ID: 32985535 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome sequencing and whole genome expression profiling of hexaploid sweetpotato under salt stress. Arisha MH; Aboelnasr H; Ahmad MQ; Liu Y; Tang W; Gao R; Yan H; Kou M; Wang X; Zhang Y; Li Q BMC Genomics; 2020 Mar; 21(1):197. PubMed ID: 32131729 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance. Diray-Arce J; Clement M; Gul B; Khan MA; Nielsen BL BMC Genomics; 2015 May; 16(1):353. PubMed ID: 25943316 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. Peng Z; He S; Gong W; Sun J; Pan Z; Xu F; Lu Y; Du X BMC Genomics; 2014 Sep; 15(1):760. PubMed ID: 25189468 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. Yaish MW; Patankar HV; Assaha DVM; Zheng Y; Al-Yahyai R; Sunkar R BMC Genomics; 2017 Mar; 18(1):246. PubMed ID: 28330456 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524 [TBL] [Abstract][Full Text] [Related]
18. A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat. Liang XD; Shalapy M; Zhao SF; Liu JH; Wang JY Planta; 2021 Nov; 254(6):130. PubMed ID: 34817644 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive Analysis of Differentially Expressed Unigenes under NaCl Stress in Flax ( Wu J; Zhao Q; Wu G; Yuan H; Ma Y; Lin H; Pan L; Li S; Sun D Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30654562 [TBL] [Abstract][Full Text] [Related]
20. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress. Wu YH; Wang T; Wang K; Liang QY; Bai ZY; Liu QL; Pan YZ; Jiang BB; Zhang L PLoS One; 2016; 11(7):e0159721. PubMed ID: 27447718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]