These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 28192487)
1. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species. Pattamayutanon P; Angeli S; Thakeow P; Abraham J; Disayathanoowat T; Chantawannakul P PLoS One; 2017; 12(2):e0172099. PubMed ID: 28192487 [TBL] [Abstract][Full Text] [Related]
2. Biomedical Activity and Related Volatile Compounds of Thai Honeys from 3 Different Honeybee Species. Pattamayutanon P; Angeli S; Thakeow P; Abraham J; Disayathanoowat T; Chantawannakul P J Food Sci; 2015 Oct; 80(10):M2228-40. PubMed ID: 26317173 [TBL] [Abstract][Full Text] [Related]
3. Untargeted and Targeted Discrimination of Honey Collected by Wang X; Rogers KM; Li Y; Yang S; Chen L; Zhou J J Agric Food Chem; 2019 Oct; 67(43):12144-12152. PubMed ID: 31587558 [TBL] [Abstract][Full Text] [Related]
4. Screening of volatile composition of Lavandula hybrida Reverchon II honey using headspace solid-phase microextraction and ultrasonic solvent extraction. Jerković I; Marijanović Z Chem Biodivers; 2009 Mar; 6(3):421-30. PubMed ID: 19319870 [TBL] [Abstract][Full Text] [Related]
5. Characterisation of the aroma profiles of different honeys and corresponding flowers using solid-phase microextraction and gas chromatography-mass spectrometry/olfactometry. Seisonen S; Kivima E; Vene K Food Chem; 2015 Feb; 169():34-40. PubMed ID: 25236195 [TBL] [Abstract][Full Text] [Related]
6. Headspace Solid Phase Microextraction Coupled to GC/MS for the Analysis of Volatiles of Honeys from Arid and Mediterranean Areas of Algeria. Neggad A; Benkaci-Ali F; Alsafra Z; Eppe G Chem Biodivers; 2019 Oct; 16(10):e1900267. PubMed ID: 31419038 [TBL] [Abstract][Full Text] [Related]
7. The determination of botanical origin of honeys based on enantiomer distribution of chiral volatile organic compounds. Špánik I; Pažitná A; Šiška P; Szolcsányi P Food Chem; 2014 Sep; 158():497-503. PubMed ID: 24731375 [TBL] [Abstract][Full Text] [Related]
8. Volatile Profile of Portuguese Monofloral Honeys: Significance in Botanical Origin Determination. Machado AM; Antunes M; Miguel MG; Vilas-Boas M; Figueiredo AC Molecules; 2021 Aug; 26(16):. PubMed ID: 34443558 [TBL] [Abstract][Full Text] [Related]
9. Description of the volatile fraction of Erica honey from the northwest of the Iberian Peninsula. Rodríguez-Flores MS; Falcão SI; Escuredo O; Seijo MC; Vilas-Boas M Food Chem; 2021 Jan; 336():127758. PubMed ID: 32784062 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of the volatile composition of honeys from Brazilian stingless bees by static headspace GC-MS. de Lima Morais da Silva P; de Lima LS; Caetano ÍK; Torres YR Food Res Int; 2017 Dec; 102():536-543. PubMed ID: 29195983 [TBL] [Abstract][Full Text] [Related]
12. Volatile compounds of five types of unifloral honey in Northwest China: Correlation with aroma and floral origin based on HS-SPME/GC-MS combined with chemometrics. Zhu M; Sun J; Zhao H; Wu F; Xue X; Wu L; Cao W Food Chem; 2022 Aug; 384():132461. PubMed ID: 35228000 [TBL] [Abstract][Full Text] [Related]
13. Identification of Floral Volatiles and Pollinator Responses in Kiwifruit Cultivars, Actinidia chinensis var. chinensis. Twidle AM; Barker D; Seal AG; Fedrizzi B; Suckling DM J Chem Ecol; 2018 Apr; 44(4):406-415. PubMed ID: 29488039 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from Cai M; Xu W; Xu Y; Pan H; Zhang Q Molecules; 2023 Jan; 28(2):. PubMed ID: 36677543 [No Abstract] [Full Text] [Related]
15. Volatile compounds of Asphodelus microcarpus Salzm. et Viv. Honey obtained by HS-SPME and USE analyzed by GC/MS. Jerković I; Tuberoso CI; Kasum A; Marijanović Z Chem Biodivers; 2011 Apr; 8(4):587-98. PubMed ID: 21480505 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the volatile organic compounds from leaves, flower spikes, and nectar of Australian grown Agastache rugosa. Yamani H; Mantri N; Morrison PD; Pang E BMC Complement Altern Med; 2014 Dec; 14():495. PubMed ID: 25510964 [TBL] [Abstract][Full Text] [Related]
17. EAG responses of Apis cerana to floral compounds of a biodiesel plant, Jatropha curcas (Euphorbiaceae). Luo C; Huang ZY; Li K; Chen X; Chen Y; Sun Y J Econ Entomol; 2013 Aug; 106(4):1653-8. PubMed ID: 24020278 [TBL] [Abstract][Full Text] [Related]
18. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples. Jerković I; Marijanović Z; Kezić J; Gugić M Molecules; 2009 Jul; 14(8):2717-28. PubMed ID: 19701118 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Evodia rutaecarpa (Juss) Benth honey: volatile profile, odor-active compounds and odor properties. Li H; Liu Z; Shuai M; Song M; Qiao D; Peng W; Chen L J Sci Food Agric; 2024 Mar; 104(4):2038-2048. PubMed ID: 37909381 [TBL] [Abstract][Full Text] [Related]
20. Application of selected ion flow tube-mass spectrometry to the characterization of monofloral New Zealand honeys. Langford V; Gray J; Foulkes B; Bray P; McEwan MJ J Agric Food Chem; 2012 Jul; 60(27):6806-15. PubMed ID: 22742490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]