These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
550 related articles for article (PubMed ID: 28192670)
1. Metal Ion Mediated Cellulose Nanofibrils Transient Network in Covalently Cross-linked Hydrogels: Mechanistic Insight into Morphology and Dynamics. Yang J; Xu F; Han CR Biomacromolecules; 2017 Mar; 18(3):1019-1028. PubMed ID: 28192670 [TBL] [Abstract][Full Text] [Related]
2. Synergistic Reinforcing Mechanisms in Cellulose Nanofibrils Composite Hydrogels: Interfacial Dynamics, Energy Dissipation, and Damage Resistance. Yang J; Xu F Biomacromolecules; 2017 Aug; 18(8):2623-2632. PubMed ID: 28686432 [TBL] [Abstract][Full Text] [Related]
3. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Dong H; Snyder JF; Williams KS; Andzelm JW Biomacromolecules; 2013 Sep; 14(9):3338-45. PubMed ID: 23919541 [TBL] [Abstract][Full Text] [Related]
4. High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds. Shao C; Chang H; Wang M; Xu F; Yang J ACS Appl Mater Interfaces; 2017 Aug; 9(34):28305-28318. PubMed ID: 28771308 [TBL] [Abstract][Full Text] [Related]
5. Mechanically Viscoelastic Properties of Cellulose Nanocrystals Skeleton Reinforced Hierarchical Composite Hydrogels. Yang J; Han C ACS Appl Mater Interfaces; 2016 Sep; 8(38):25621-30. PubMed ID: 27606621 [TBL] [Abstract][Full Text] [Related]
6. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels. Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518 [TBL] [Abstract][Full Text] [Related]
7. Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology. Song Y; Kim B; Park JD; Lee D Carbohydr Polym; 2023 Jan; 300():120262. PubMed ID: 36372514 [TBL] [Abstract][Full Text] [Related]
8. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Zhou C; Wu Q Colloids Surf B Biointerfaces; 2011 May; 84(1):155-62. PubMed ID: 21273050 [TBL] [Abstract][Full Text] [Related]
9. Polyphenol-induced cellulose nanofibrils anchored graphene oxide as nanohybrids for strong yet tough soy protein nanocomposites. Wang Z; Kang H; Zhao S; Zhang W; Zhang S; Li J Carbohydr Polym; 2018 Jan; 180():354-364. PubMed ID: 29103515 [TBL] [Abstract][Full Text] [Related]
10. Unidirectional Swelling of Dynamic Cellulose Nanofibril Networks: A Platform for Tunable Hydrogels and Aerogels with 3D Shapeability. Benselfelt T; Wågberg L Biomacromolecules; 2019 Jun; 20(6):2406-2412. PubMed ID: 31050412 [TBL] [Abstract][Full Text] [Related]
11. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
12. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. Liu Q; Liu J; Qin S; Pei Y; Zheng X; Tang K Int J Biol Macromol; 2020 Dec; 164():1776-1784. PubMed ID: 32791281 [TBL] [Abstract][Full Text] [Related]
13. Revealing the enhanced structural recovery and gelation mechanisms of cation-induced cellulose nanofibrils composite hydrogels. Ju Y; Ha J; Song Y; Lee D Carbohydr Polym; 2021 Nov; 272():118515. PubMed ID: 34420757 [TBL] [Abstract][Full Text] [Related]
14. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. Yang J; Han CR; Duan JF; Xu F; Sun RC ACS Appl Mater Interfaces; 2013 Apr; 5(8):3199-207. PubMed ID: 23534336 [TBL] [Abstract][Full Text] [Related]
16. Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Li N; Chen G; Chen W; Huang J; Tian J; Wan X; He M; Zhang H Carbohydr Polym; 2017 Dec; 178():159-165. PubMed ID: 29050581 [TBL] [Abstract][Full Text] [Related]
17. Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Zhong M; Liu XY; Shi FK; Zhang LQ; Wang XP; Cheetham AG; Cui H; Xie XM Soft Matter; 2015 Jun; 11(21):4235-41. PubMed ID: 25892460 [TBL] [Abstract][Full Text] [Related]
18. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. Shao C; Meng L; Wang M; Cui C; Wang B; Han CR; Xu F; Yang J ACS Appl Mater Interfaces; 2019 Feb; 11(6):5885-5895. PubMed ID: 30652853 [TBL] [Abstract][Full Text] [Related]
19. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels. Wei J; Chen Y; Liu H; Du C; Yu H; Zhou Z Carbohydr Polym; 2016 Aug; 147():201-207. PubMed ID: 27178925 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Lu J; Zhu W; Dai L; Si C; Ni Y Carbohydr Polym; 2019 Jul; 215():289-295. PubMed ID: 30981356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]