These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28192717)

  • 1. System identification of velocity mechanomyogram measured with a capacitor microphone for muscle stiffness estimation.
    Uchiyama T; Tomoshige T
    J Electromyogr Kinesiol; 2017 Apr; 33():57-63. PubMed ID: 28192717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle stiffness estimation using a system identification technique applied to evoked mechanomyogram during cycling exercise.
    Uchiyama T; Saito K; Shinjo K
    J Electromyogr Kinesiol; 2015 Dec; 25(6):847-52. PubMed ID: 26493234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. System identification of evoked mechanomyogram from abductor pollicis brevis muscle in isometric contraction.
    Uchiyama T; Sakai H
    Med Biol Eng Comput; 2013 Dec; 51(12):1349-55. PubMed ID: 23934080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of displacement and acceleration transducers for the characterization of mechanics of muscle and subcutaneous tissues by system identification of a mechanomyogram.
    Uchiyama T; Shinohara K
    Med Biol Eng Comput; 2013 Feb; 51(1-2):165-73. PubMed ID: 23129101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. System identification of mechanomyograms detected with an acceleration sensor and a laser displacement meter.
    Uchiyama T; Shinohara K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7131-4. PubMed ID: 22255982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of accelerometer location on mechanomyogram variables during voluntary, constant-force contractions in three human muscles.
    Cescon C; Farina D; Gobbo M; Merletti R; Orizio C
    Med Biol Eng Comput; 2004 Jan; 42(1):121-7. PubMed ID: 14977233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. System identification of mechanomyogram evoked by common peroneal nerve stimulation.
    Higuchi T; Yamaguchi T; Uchiyama T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():323-5. PubMed ID: 19162658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The surface mechanomyogram as a tool to describe the influence of fatigue on biceps brachii motor unit activation strategy. Historical basis and novel evidence.
    Orizio C; Gobbo M; Diemont B; Esposito F; Veicsteinas A
    Eur J Appl Physiol; 2003 Oct; 90(3-4):326-36. PubMed ID: 12923643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. System identification of the mechanomyogram from single motor units during voluntary isometric contraction.
    Uchiyama T; Hashimoto E
    Med Biol Eng Comput; 2011 Sep; 49(9):1035-43. PubMed ID: 21394651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of the mechanomyogram detected with an accelerometer during voluntary contractions.
    Watakabe M; Mita K; Akataki K; Ito K
    Med Biol Eng Comput; 2003 Mar; 41(2):198-202. PubMed ID: 12691440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical behaviour of condenser microphone in mechanomyography.
    Watakabe M; Mita K; Akataki K; Itoh Y
    Med Biol Eng Comput; 2001 Mar; 39(2):195-201. PubMed ID: 11361247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface mechanomyogram reflects the changes in the mechanical properties of muscle at fatigue.
    Orizio C; Diemont B; Esposito F; Alfonsi E; Parrinello G; Moglia A; Veicsteinas A
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):276-84. PubMed ID: 10483796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between mechanomyogram and force during voluntary contractions reinvestigated using spectral decomposition.
    Akataki K; Mita K; Itoh Y
    Eur J Appl Physiol Occup Physiol; 1999 Aug; 80(3):173-9. PubMed ID: 10453917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transients of the force and surface mechanomyogram during cat gastrocnemius tetanic stimulation.
    Orizio C; Gobbo M; Veicsteinas A; Baratta RV; Zhou BH; Solomonow M
    Eur J Appl Physiol; 2003 Feb; 88(6):601-6. PubMed ID: 12560961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanomyogram amplitude correlates with human gastrocnemius medialis muscle and tendon stiffness both before and after acute passive stretching.
    Longo S; Cè E; Rampichini S; Devoto M; Limonta E; Esposito F
    Exp Physiol; 2014 Oct; 99(10):1359-69. PubMed ID: 24951499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Torque and surface mechanomyogram parallel reduction during fatiguing stimulation in human muscles.
    Gobbo M; Cè E; Diemont B; Esposito F; Orizio C
    Eur J Appl Physiol; 2006 May; 97(1):9-15. PubMed ID: 16477444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional spatial distribution of surface mechanomyographical response to single motor unit activity.
    Cescon C; Madeleine P; Graven-Nielsen T; Merletti R; Farina D
    J Neurosci Methods; 2007 Jan; 159(1):19-25. PubMed ID: 16876257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of skinfold on frequency of human muscle mechanomyogram.
    Jaskólska A; Brzenczek W; Kisiel-Sajewicz K; Kawczyński A; Marusiak J; Jaskólski A
    J Electromyogr Kinesiol; 2004 Apr; 14(2):217-25. PubMed ID: 14962774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal and transverse propagation of surface mechanomyographic waves generated by single motor unit activity.
    Cescon C; Madeleine P; Farina D
    Med Biol Eng Comput; 2008 Sep; 46(9):871-7. PubMed ID: 18543012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanomyogram for identifying muscle activity and fatigue.
    Yang ZF; Kumar DK; Arjunan SP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():408-11. PubMed ID: 19964221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.