These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 28192776)
1. CORAL and Nano-QFAR: Quantitative feature - Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co Toropova AP; Toropov AA; Leszczynska D; Leszczynski J Ecotoxicol Environ Saf; 2017 May; 139():404-407. PubMed ID: 28192776 [TBL] [Abstract][Full Text] [Related]
2. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data. Toropova AP; Toropov AA J Theor Biol; 2017 Mar; 416():113-118. PubMed ID: 28087422 [TBL] [Abstract][Full Text] [Related]
3. Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions. Toropov AA; Toropova AP Chemosphere; 2015 Nov; 139():18-22. PubMed ID: 26026259 [TBL] [Abstract][Full Text] [Related]
4. Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials. Toropov AA; Rallo R; Toropova AP Curr Top Med Chem; 2015; 15(18):1837-44. PubMed ID: 25961527 [TBL] [Abstract][Full Text] [Related]
5. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: the case of a group of ZnO and TiO2 nanoparticles. Toropova AP; Toropov AA; Benfenati E; Puzyn T; Leszczynska D; Leszczynski J Ecotoxicol Environ Saf; 2014 Oct; 108():203-9. PubMed ID: 25086232 [TBL] [Abstract][Full Text] [Related]
6. Mutagenicity: QSAR - quasi-QSAR - nano-QSAR. Toropova AP; Toropov AA Mini Rev Med Chem; 2015; 15(8):608-21. PubMed ID: 25694078 [TBL] [Abstract][Full Text] [Related]
7. Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions. Toropova AP; Toropov AA; Veselinović AM; Veselinović JB; Benfenati E; Leszczynska D; Leszczynski J Ecotoxicol Environ Saf; 2016 Feb; 124():32-36. PubMed ID: 26452192 [TBL] [Abstract][Full Text] [Related]
8. Correlation intensity index: Building up models for mutagenicity of silver nanoparticles. Toropov AA; Toropova AP Sci Total Environ; 2020 Oct; 737():139720. PubMed ID: 32554036 [TBL] [Abstract][Full Text] [Related]
9. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria. Ahmadi S Chemosphere; 2020 Mar; 242():125192. PubMed ID: 31677509 [TBL] [Abstract][Full Text] [Related]
11. Quasi-SMILES-Based Nano-Quantitative Structure-Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to Human Lung Cells. Trinh TX; Choi JS; Jeon H; Byun HG; Yoon TH; Kim J Chem Res Toxicol; 2018 Mar; 31(3):183-190. PubMed ID: 29439565 [TBL] [Abstract][Full Text] [Related]
12. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851 [TBL] [Abstract][Full Text] [Related]
13. Quasi-SMILES as a basis for the development of models for the toxicity of ZnO nanoparticles. Toropov AA; Toropova AP Sci Total Environ; 2021 Jun; 772():145532. PubMed ID: 33578164 [TBL] [Abstract][Full Text] [Related]
14. In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES. Toropova AP; Toropov AA; Fjodorova N Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768396 [TBL] [Abstract][Full Text] [Related]
15. Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes. Toropov AA; Toropova AP Chemosphere; 2015 Apr; 124():40-6. PubMed ID: 25465947 [TBL] [Abstract][Full Text] [Related]
16. Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions. Toropova AP; Toropov AA; Leszczynski J; Sizochenko N Environ Toxicol Pharmacol; 2021 Aug; 86():103665. PubMed ID: 33895354 [TBL] [Abstract][Full Text] [Related]
17. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Aruoja V; Dubourguier HC; Kasemets K; Kahru A Sci Total Environ; 2009 Feb; 407(4):1461-8. PubMed ID: 19038417 [TBL] [Abstract][Full Text] [Related]
18. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368 [TBL] [Abstract][Full Text] [Related]