BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28192900)

  • 1. Biphasic Affinity Chromatographic Approach for Deep Tyrosine Phosphoproteome Analysis.
    Deng Z; Dong M; Wang Y; Dong J; Li SS; Zou H; Ye M
    Anal Chem; 2017 Feb; 89(4):2405-2410. PubMed ID: 28192900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Step SH2 Superbinder-Based Approach for Sensitive Analysis of Tyrosine Phosphoproteome.
    Yao Y; Wang Y; Wang S; Liu X; Liu Z; Li Y; Fang Z; Mao J; Zheng Y; Ye M
    J Proteome Res; 2019 Apr; 18(4):1870-1879. PubMed ID: 30875230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis.
    Dong M; Bian Y; Wang Y; Dong J; Yao Y; Deng Z; Qin H; Zou H; Ye M
    Anal Chem; 2017 Sep; 89(17):9307-9314. PubMed ID: 28796482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder.
    Bian Y; Li L; Dong M; Liu X; Kaneko T; Cheng K; Liu H; Voss C; Cao X; Wang Y; Litchfield D; Ye M; Li SS; Zou H
    Nat Chem Biol; 2016 Nov; 12(11):959-966. PubMed ID: 27642862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome.
    Chua XY; Mensah T; Aballo T; Mackintosh SG; Edmondson RD; Salomon AR
    Mol Cell Proteomics; 2020 Apr; 19(4):730-743. PubMed ID: 32071147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of novel affinity reagents for detecting protein tyrosine phosphorylation based on superbinder SH2 domain in tumor cells.
    Ke AQ; Liu AD; Gao YN; Luo DN; Li ZF; Yu YQ; Liu JY; Xu H; Cao X
    Anal Chim Acta; 2018 Nov; 1032():138-146. PubMed ID: 30143211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis.
    Veggiani G; Huang H; Yates BP; Tong J; Kaneko T; Joshi R; Li SSC; Moran MF; Gish G; Sidhu SS
    Protein Sci; 2019 Feb; 28(2):403-413. PubMed ID: 30431205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis.
    Mamone G; Picariello G; Ferranti P; Addeo F
    Proteomics; 2010 Feb; 10(3):380-93. PubMed ID: 19953538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated and High-Throughput Approach for Sensitive Analysis of Tyrosine Phosphoproteome.
    Kong Q; Weng Y; Zheng Z; Chen W; Li P; Cai Z; Tian R
    Anal Chem; 2022 Oct; 94(40):13728-13736. PubMed ID: 36179360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Density, Targeted Monitoring of Tyrosine Phosphorylation Reveals Activated Signaling Networks in Human Tumors.
    Stopfer LE; Flower CT; Gajadhar AS; Patel B; Gallien S; Lopez-Ferrer D; White FM
    Cancer Res; 2021 May; 81(9):2495-2509. PubMed ID: 33509940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered SH2 Domains for Targeted Phosphoproteomics.
    Martyn GD; Veggiani G; Kusebauch U; Morrone SR; Yates BP; Singer AU; Tong J; Manczyk N; Gish G; Sun Z; Kurinov I; Sicheri F; Moran MF; Moritz RL; Sidhu SS
    ACS Chem Biol; 2022 Jun; 17(6):1472-1484. PubMed ID: 35613471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase.
    Bradshaw JM; Mitaxov V; Waksman G
    J Mol Biol; 1999 Nov; 293(4):971-85. PubMed ID: 10543978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of metal-chelate affinity chromatography to the study of the phosphoproteome.
    Imam-Sghiouar N; Joubert-Caron R; Caron M
    Amino Acids; 2005 Feb; 28(1):105-9. PubMed ID: 15645166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage-Displayed SH2 Domain Libraries: From Ultrasensitive Tyrosine Phosphoproteome Probes to Translational Research.
    Martyn GD; Veggiani G
    Cold Spring Harb Protoc; 2024 May; 2024(5):107981. PubMed ID: 37197827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SH2 Superbinder Modified Monolithic Capillary Column for the Sensitive Analysis of Protein Tyrosine Phosphorylation.
    Yao Y; Bian Y; Dong M; Wang Y; Lv J; Chen L; Wang H; Mao J; Dong J; Ye M
    J Proteome Res; 2018 Jan; 17(1):243-251. PubMed ID: 29083189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Enrichment of Cysteine-Containing Phosphopeptides for Subphosphoproteome Analysis.
    Dong M; Bian Y; Dong J; Wang K; Liu Z; Qin H; Ye M; Zou H
    J Proteome Res; 2015 Dec; 14(12):5341-7. PubMed ID: 26552605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimized platform for hydrophilic interaction chromatography-immobilized metal affinity chromatography enables deep coverage of the rat liver phosphoproteome.
    Zappacosta F; Scott GF; Huddleston MJ; Annan RS
    J Proteome Res; 2015 Feb; 14(2):997-1009. PubMed ID: 25575281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Phosphotyrosine-Dependent Signaling Profiling in Living Cells by Two-Dimensional Proximity Proteomics.
    Kong Q; Ke M; Weng Y; Qin Y; He A; Li P; Cai Z; Tian R
    J Proteome Res; 2022 Nov; 21(11):2727-2735. PubMed ID: 36280823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of phosphopeptide enrichment techniques for phosphoproteome analysis.
    Han G; Ye M; Zou H
    Analyst; 2008 Sep; 133(9):1128-38. PubMed ID: 18709185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.