BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28192949)

  • 1. One-Pot Synthesis of Fluorescent Silicon Nanoparticles for Sensitive and Selective Determination of 2,4,6-Trinitrophenol in Aqueous Solution.
    Han Y; Chen Y; Feng J; Liu J; Ma S; Chen X
    Anal Chem; 2017 Mar; 89(5):3001-3008. PubMed ID: 28192949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.
    Ma Y; Li H; Peng S; Wang L
    Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot synthesis of novel water-dispersible fluorescent silicon nanoparticles for selective Cr
    Wen Q; Pan C; Qin X; Ma Q; Feng S
    Anal Methods; 2021 Jan; 13(3):390-398. PubMed ID: 33406173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective detection of 2,4,6-trinitrophenol based on a fluorescent nanoscale bis(8-hydroxyquinoline) metal complex.
    Lv XJ; Qi L; Gao XY; Wang H; Huo Y; Zhang ZQ
    Talanta; 2016 Apr; 150():319-23. PubMed ID: 26838414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,4,6-Trinitrophenol detection by a new portable sensing gadget using carbon dots as a fluorescent probe.
    Chen B; Chai S; Liu J; Liu C; Li Y; He J; Yu Z; Yang T; Feng C; Huang C
    Anal Bioanal Chem; 2019 Apr; 411(11):2291-2300. PubMed ID: 30826851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile and sensitive hexahomotrioxacalix[3]arene-based fluorescent sensor for the detection of trace amounts of 2,4,6-trinitrophenol.
    Liu YL; Wu LF; Wu C; Rahman S; Alodhayb A; Redshaw C; Georghiou PE; Yamato T
    Sci Total Environ; 2024 Jan; 908():168209. PubMed ID: 37914116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium.
    Harathi J; Thenmozhi K
    Chemosphere; 2022 Jan; 286(Pt 2):131825. PubMed ID: 34375830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters.
    Li H; Chang J; Hou T; Ge L; Li F
    Talanta; 2016 Nov; 160():475-480. PubMed ID: 27591641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of nonconjugated fluorescent polymer nanoparticles for use as a fluorescent probe for detection of 2,4,6-trinitrophenol.
    Liu J; Wu F; Xie A; Liu C; Bao H
    Anal Bioanal Chem; 2020 Feb; 412(5):1235-1242. PubMed ID: 31907591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent nucleotide-lanthanide nanoparticles for highly selective determination of picric acid.
    Gao R; Wang J; Wang H; Dong W; Zhu J
    Mikrochim Acta; 2021 Jan; 188(1):18. PubMed ID: 33404778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective and sensitive detection of 2,4,6-trinitrophenol by using newly developed blue-green photoluminescent carbon nanodots.
    Liu ML; Chen BB; Liu ZX; Huang CZ
    Talanta; 2016 Dec; 161():875-880. PubMed ID: 27769497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives.
    Ma Y; Wang L
    Talanta; 2014 Mar; 120():100-5. PubMed ID: 24468348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective determination of 2,4,6-trinitrophenol by using a novel carbon nanoparticles as a fluorescent probe in real sample.
    Lai W; Guo J; Zheng N; Nie Y; Ye S; Tang D
    Anal Bioanal Chem; 2020 May; 412(13):3083-3090. PubMed ID: 32152652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive and ultrafast film sensor based on polyethyleneimine-capped quantum dots for trinitrophenol visual detection.
    Han T; Kang H; Yuan Y; Zhang Y; Dong L
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118243. PubMed ID: 32193160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A label-free fluorescence sensing approach for selective and sensitive detection of 2,4,6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets.
    Rong M; Lin L; Song X; Zhao T; Zhong Y; Yan J; Wang Y; Chen X
    Anal Chem; 2015 Jan; 87(2):1288-96. PubMed ID: 25514848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Masking quercetin: A simple strategy for selective detection of rutin by combination of bovine serum albumin and fluorescent silicon nanoparticles.
    Yu L; Zhang S; Xu H; Wang L; Zhu X; Chen X; Xu W; Xu W; Zhang H; Lin Y
    Anal Chim Acta; 2020 Aug; 1126():7-15. PubMed ID: 32736726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A long-persistent phosphorescent chemosensor for the detection of TNP based on CaTiO
    Li F; Wang F; Hu X; Zheng B; Du J; Xiao D
    RSC Adv; 2018 May; 8(30):16603-16610. PubMed ID: 35540505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reliable and facile fluorescent sensor from carbon dots for sensing 2,4,6-trinitrophenol based on inner filter effect.
    Wang X; Liu Y; Zhou Q; Sheng X; Sun Y; Zhou B; Zhao J; Guo J
    Sci Total Environ; 2020 Jun; 720():137680. PubMed ID: 32325600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and Green Approach to the Synthesis of Boron Nitride Quantum Dots for 2,4,6-Trinitrophenol Sensing.
    Peng D; Zhang L; Li FF; Cui WR; Liang RP; Qiu JD
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7315-7323. PubMed ID: 29405691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters.
    Deng X; Huang X; Wu D
    Anal Bioanal Chem; 2015 Jun; 407(16):4607-13. PubMed ID: 25893800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.