These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28193019)

  • 1. Low-Voltage Flow-Through Electroporation in Gold-Microtube Membranes.
    Experton J; Wilson AG; Martin CR
    Anal Chem; 2016 Dec; 88(24):12445-12452. PubMed ID: 28193019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Voltage Flow-Through Electroporation Membrane and Method.
    Experton J; Wilson AG; Martin CR
    Methods Mol Biol; 2020; 2050():43-55. PubMed ID: 31468478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Screening of Electric Fields for Electroporation.
    Garcia PA; Ge Z; Moran JL; Buie CR
    Sci Rep; 2016 Feb; 6():21238. PubMed ID: 26893024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro.
    Rebersek M; Faurie C; Kanduser M; Corović S; Teissié J; Rols MP; Miklavcic D
    Biomed Eng Online; 2007 Jul; 6():25. PubMed ID: 17601347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of an irreversible electroporation system for clinical use.
    Bertacchini C; Margotti PM; Bergamini E; Lodi A; Ronchetti M; Cadossi R
    Technol Cancer Res Treat; 2007 Aug; 6(4):313-20. PubMed ID: 17668939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival.
    Grys M; Madeja Z; Korohoda W
    Cell Mol Biol Lett; 2017; 22():1. PubMed ID: 28536632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges.
    Kim SK; Kim JH; Kim KP; Chung TD
    Anal Chem; 2007 Oct; 79(20):7761-6. PubMed ID: 17874852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of low-voltage pulse parameters on electroporation and electrical lysis using a microfluidic device with interdigitated electrodes.
    Morshed BI; Shams M; Mussivand T
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):871-82. PubMed ID: 24557688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculating transmembrane voltage on the electric pulse-affected cancerous cell membrane: using molecular dynamics and finite element simulations.
    Mirshahi S; Vahedi B; Yazdani SO; Golab M; Sazgarnia A
    J Mol Model; 2024 Jun; 30(7):221. PubMed ID: 38904863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroporation based on hydrodynamic focusing of microfluidics with low dc voltage.
    Zhu T; Luo C; Huang J; Xiong C; Ouyang Q; Fang J
    Biomed Microdevices; 2010 Feb; 12(1):35-40. PubMed ID: 19757070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination.
    Dermol J; Miklavčič D
    Bioelectrochemistry; 2014 Dec; 100():52-61. PubMed ID: 24731594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Transport Prompts the Performance of Low-Voltage Electroporation for Cell Inactivation.
    Huo ZY; Li GQ; Yu T; Feng C; Lu Y; Wu YH; Yu C; Xie X; Hu HY
    Sci Rep; 2018 Oct; 8(1):15832. PubMed ID: 30361540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically transparent polymer devices for in situ assessment of cell electroporation.
    Majhi AK; Thrivikraman G; Basu B; Venkataraman V
    Eur Biophys J; 2015 Feb; 44(1-2):57-67. PubMed ID: 25502470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Cell to Tissue Properties-Modeling Skin Electroporation With Pore and Local Transport Region Formation.
    Dermol-Cerne J; Miklavcic D
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):458-468. PubMed ID: 29364121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic device for electrofusion of biological vesicles.
    Tresset G; Takeuchi S
    Biomed Microdevices; 2004 Sep; 6(3):213-8. PubMed ID: 15377830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-through electroporation based on constant voltage for large-volume transfection of cells.
    Geng T; Zhan Y; Wang HY; Witting SR; Cornetta KG; Lu C
    J Control Release; 2010 May; 144(1):91-100. PubMed ID: 20117155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ElectroPen: An ultra-low-cost, electricity-free, portable electroporator.
    Byagathvalli G; Sinha S; Zhang Y; Styczynski MP; Standeven J; Bhamla MS
    PLoS Biol; 2020 Jan; 18(1):e3000589. PubMed ID: 31922526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroporation and electrofusion in field-tailored microstructures.
    Washizu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2829-32. PubMed ID: 24110316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation.
    Sharma V; Stebe K; Murphy JC; Tung L
    Biophys J; 1996 Dec; 71(6):3229-41. PubMed ID: 8968593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.