BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28193065)

  • 1. Native MS Analysis of Bacteriorhodopsin and an Empty Nanodisc by Orthogonal Acceleration Time-of-Flight, Orbitrap and Ion Cyclotron Resonance.
    Campuzano ID; Li H; Bagal D; Lippens JL; Svitel J; Kurzeja RJ; Xu H; Schnier PD; Loo JA
    Anal Chem; 2016 Dec; 88(24):12427-12436. PubMed ID: 28193065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Mass Analysis with a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: From Inorganic Salt Clusters to Antibody Conjugates and Beyond.
    Campuzano IDG; Nshanian M; Spahr C; Lantz C; Netirojjanakul C; Li H; Wongkongkathep P; Wolff JJ; Loo JA
    J Am Soc Mass Spectrom; 2020 May; 31(5):1155-1162. PubMed ID: 32196330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry as a Platform for Characterizing Multimeric Membrane Protein Complexes.
    Lippens JL; Nshanian M; Spahr C; Egea PF; Loo JA; Campuzano IDG
    J Am Soc Mass Spectrom; 2018 Jan; 29(1):183-193. PubMed ID: 28971338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
    Watanabe HC; Ishikura T; Yamato T
    Proteins; 2009 Apr; 75(1):53-61. PubMed ID: 18767148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Transfer of 7TM Membrane Protein from Native Membrane to Covalently Circularized Nanodisc.
    Yeh V; Lee TY; Chen CW; Kuo PC; Shiue J; Chu LK; Yu TY
    Sci Rep; 2018 Sep; 8(1):13501. PubMed ID: 30201976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipidic cubic phases as matrices for membrane protein crystallization.
    Nollert P
    Methods; 2004 Nov; 34(3):348-53. PubMed ID: 15325652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.
    Yan J; Zhou M; Gilbert JD; Wolff JJ; Somogyi Á; Pedder RE; Quintyn RS; Morrison LJ; Easterling ML; Paša-Tolić L; Wysocki VH
    Anal Chem; 2017 Jan; 89(1):895-901. PubMed ID: 27977147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tandem mass spectrometric accurate mass performance of time-of-flight and Fourier transform ion cyclotron resonance mass spectrometry: a case study with pyridine derivatives.
    Hau J; Stadler R; Jenny TA; Fay LB
    Rapid Commun Mass Spectrom; 2001; 15(19):1840-8. PubMed ID: 11565102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoiling collagen: a multidimensional mass spectrometry study.
    Simon HJ; van Agthoven MA; Lam PY; Floris F; Chiron L; Delsuc MA; Rolando C; Barrow MP; O'Connor PB
    Analyst; 2016 Jan; 141(1):157-65. PubMed ID: 26568361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Lipid-Bound Bacteriorhodopsin Trimer Complex Directly from Purple Membrane by Native Mass Spectrometry.
    Le J; Loo JA
    J Am Soc Mass Spectrom; 2023 Dec; 34(12):2620-2624. PubMed ID: 37975648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fourier transform ion cyclotron resonance mass spectrometry at the true cyclotron frequency.
    Nagornov KO; Tsybin OY; Nicol E; Kozhinov AN; Tsybin YO
    Mass Spectrom Rev; 2022 Mar; 41(2):314-337. PubMed ID: 33462876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards analytically useful two-dimensional Fourier transform ion cyclotron resonance mass spectrometry.
    van Agthoven MA; Delsuc MA; Bodenhausen G; Rolando C
    Anal Bioanal Chem; 2013 Jan; 405(1):51-61. PubMed ID: 23076397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of both melittin and its site-specific mutants with bacteriorhodopsin of Halobacterium halobium: sites of electrostatic interaction on melittin.
    Jiang QX; Hu KS; Shi H
    Photochem Photobiol; 1994 Aug; 60(2):175-8. PubMed ID: 7938217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase A phosphorylation characterized by tandem Fourier transform ion cyclotron resonance mass spectrometry.
    Chalmers MJ; Håkansson K; Johnson R; Smith R; Shen J; Emmett MR; Marshall AG
    Proteomics; 2004 Apr; 4(4):970-81. PubMed ID: 15048979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native-MS Analysis of Monoclonal Antibody Conjugates by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.
    Campuzano IDG; Netirojjanakul C; Nshanian M; Lippens JL; Kilgour DPA; Van Orden S; Loo JA
    Anal Chem; 2018 Jan; 90(1):745-751. PubMed ID: 29193956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin.
    Farooq A
    Biochemistry; 1998 Oct; 37(43):15170-6. PubMed ID: 9790681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers.
    Payne AH; Glish GL
    Methods Enzymol; 2005; 402():109-48. PubMed ID: 16401508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native and Denaturing MS Protein Deconvolution for Biopharma: Monoclonal Antibodies and Antibody-Drug Conjugates to Polydisperse Membrane Proteins and Beyond.
    Campuzano IDG; Robinson JH; Hui JO; Shi SD; Netirojjanakul C; Nshanian M; Egea PF; Lippens JL; Bagal D; Loo JA; Bern M
    Anal Chem; 2019 Aug; 91(15):9472-9480. PubMed ID: 31194911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.