These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 2819327)

  • 81. Capsaicin-sensitive afferents and their role in gastroprotection: an update.
    Szolcsányi J; Barthó L
    J Physiol Paris; 2001; 95(1-6):181-8. PubMed ID: 11595435
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The excitation of cutaneous nerve endings in a neuroma by capsaicin.
    Hartung M; Leah J; Zimmerman M
    Brain Res; 1989 Oct; 499(2):363-6. PubMed ID: 2804683
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Capsaicin and carbon dioxide act by distinct mechanisms on sensory nerve terminals in the cat cornea.
    Chen X; Belmonte C; Rang HP
    Pain; 1997 Mar; 70(1):23-9. PubMed ID: 9106806
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Neonatal capsaicin treatment of rats reduces ACTH secretion in response to peripheral neuronal stimuli but not to centrally acting stressors.
    Donnerer J; Lembeck F
    Br J Pharmacol; 1988 Jul; 94(3):647-52. PubMed ID: 2846107
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The receptive part of the primary afferent axon is most vulnerable to systemic capsaicin in adult rats.
    Chung K; Klein CM; Coggeshall RE
    Brain Res; 1990 Mar; 511(2):222-6. PubMed ID: 2334845
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Spontaneous release of immunoreactive neuropeptide Y from the central terminals of large diameter primary afferents of rats with peripheral nerve injury.
    Mark MA; Colvin LA; Duggan AW
    Neuroscience; 1998 Mar; 83(2):581-9. PubMed ID: 9460764
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sensory neuropeptide release by bradykinin: mechanisms and pathophysiological implications.
    Geppetti P
    Regul Pept; 1993 Aug; 47(1):1-23. PubMed ID: 8210518
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Capsaicin-sensitive sensory nerve terminals with local and systemic efferent functions: facts and scopes of an unorthodox neuroregulatory mechanism.
    Szolcsányi J
    Prog Brain Res; 1996; 113():343-59. PubMed ID: 9009744
    [No Abstract]   [Full Text] [Related]  

  • 89. Possible morphological correlates of capsaicin desensitization.
    Király E; Jancsó G; Hajós M
    Brain Res; 1991 Feb; 540(1-2):279-82. PubMed ID: 2054619
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Cardiodepressant effects of ethanol on guinea-pig atria: presynaptic and postsynaptic components.
    Mantelli L; Corti V; Ledda F
    J Pharm Pharmacol; 1985 Sep; 37(9):651-3. PubMed ID: 2867188
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Recent advances in research on sensory peptides and capsaicin mechanisms. A conference report.
    Maggi CA; Pierau FK
    Neurosci Lett; 1991 Jan; 122(2):199-201. PubMed ID: 2027520
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sensory neuron-specific actions of capsaicin: mechanisms and applications.
    Bevan S; Szolcsányi J
    Trends Pharmacol Sci; 1990 Aug; 11(8):330-3. PubMed ID: 2203194
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Sensory pharmacology.
    Donnerer J; Amann R
    Pharmacol Toxicol; 1991 Oct; 69(4):228-32. PubMed ID: 1956874
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Therapeutic potential of capsaicin-like molecules: studies in animals and humans.
    Maggi CA
    Life Sci; 1992; 51(23):1777-81. PubMed ID: 1435086
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Double peak sensory responses: effects of capsaicin.
    Aprile I; Tonali P; Stalberg E; Di Stasio E; Caliandro P; Foschini M; Vergili G; Padua L
    Neurol Sci; 2007 Oct; 28(5):264-9. PubMed ID: 17972041
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The neurogenic contribution to synovial leucocyte infiltration and other outcome measures in a guinea pig model of arthritis.
    Hood VC; Cruwys SC; Urban L; Kidd BL
    Neurosci Lett; 2001 Feb; 299(3):201-4. PubMed ID: 11165770
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Molecular Links between Sensory Nerves, Inflammation, and Pain 2.0.
    Szőke É; Helyes Z
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569621
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The effect of a peripherally-acting opioid on sensory nerve function.
    Garland L
    Pulm Pharmacol; 1995; 8(4-5):231-6. PubMed ID: 8782279
    [No Abstract]   [Full Text] [Related]  

  • 99. Effect of tunicamycin on peripheral nerves in the guinea pig.
    Cai Z; Finnie JW; Blumbergs PC
    Aust Vet J; 2004 May; 82(5):308. PubMed ID: 15181934
    [No Abstract]   [Full Text] [Related]  

  • 100. An assessment of dapsone toxicity in the guinea-pig.
    Williams MH; Bradley WG
    Br J Dermatol; 1972 Jun; 86(6):650. PubMed ID: 5045955
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.