These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
879 related articles for article (PubMed ID: 28193291)
1. Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. da Cruz Ferreira DA; Degener CM; de Almeida Marques-Toledo C; Bendati MM; Fetzer LO; Teixeira CP; Eiras ÁE Parasit Vectors; 2017 Feb; 10(1):78. PubMed ID: 28193291 [TBL] [Abstract][Full Text] [Related]
2. Temporal abundance of Aedes aegypti in Manaus, Brazil, measured by two trap types for adult mosquitoes. Degener CM; Ázara TM; Roque RA; Codeço CT; Nobre AA; Ohly JJ; Geier M; Eiras ÁE Mem Inst Oswaldo Cruz; 2014 Dec; 109(8):1030-40. PubMed ID: 25494470 [TBL] [Abstract][Full Text] [Related]
3. Surveillance of Aedes aegypti: comparison of house index with four alternative traps. Codeço CT; Lima AW; Araújo SC; Lima JB; Maciel-de-Freitas R; Honório NA; Galardo AK; Braga IA; Coelho GE; Valle D PLoS Negl Trop Dis; 2015 Feb; 9(2):e0003475. PubMed ID: 25668559 [TBL] [Abstract][Full Text] [Related]
4. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities. Agha SB; Tchouassi DP; Bastos ADS; Sang R Parasit Vectors; 2017 Dec; 10(1):628. PubMed ID: 29284522 [TBL] [Abstract][Full Text] [Related]
5. Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal. Tuladhar R; Singh A; Banjara MR; Gautam I; Dhimal M; Varma A; Choudhary DK Parasit Vectors; 2019 Jan; 12(1):42. PubMed ID: 30658693 [TBL] [Abstract][Full Text] [Related]
6. Meteorological variables associated with the temporal oviposition rate of Aedes aegypti (Diptera: Culicidae) in Resistencia city, Chaco province, Northeastern Argentina. Gimenez JO; Alvarez CN; Almirón WR; Stein M Acta Trop; 2020 Dec; 212():105678. PubMed ID: 32853543 [TBL] [Abstract][Full Text] [Related]
8. Density of Aedes aegypti and Aedes albopictus and its association with number of residents and meteorological variables in the home environment of dengue endemic area, São Paulo, Brazil. Rodrigues Mde M; Marques GR; Serpa LL; Arduino Mde B; Voltolini JC; Barbosa GL; Andrade VR; de Lima VL Parasit Vectors; 2015 Feb; 8():115. PubMed ID: 25890384 [TBL] [Abstract][Full Text] [Related]
9. Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps. Honório NA; Codeço CT; Alves FC; Magalhães MA; Lourenço-De-Oliveira R J Med Entomol; 2009 Sep; 46(5):1001-14. PubMed ID: 19769029 [TBL] [Abstract][Full Text] [Related]
10. Effects of the El Niño-Southern Oscillation and seasonal weather conditions on Aedes aegypti infestation in the State of São Paulo (Brazil): A Bayesian spatio-temporal study. Pirani M; Lorenz C; de Azevedo TS; Barbosa GL; Blangiardo M; Chiaravalloti-Neto F PLoS Negl Trop Dis; 2024 Sep; 18(9):e0012397. PubMed ID: 39264869 [TBL] [Abstract][Full Text] [Related]
11. Integrated vector control of Aedes aegypti mosquitoes around target houses. Barrera R; Amador M; Munoz J; Acevedo V Parasit Vectors; 2018 Feb; 11(1):88. PubMed ID: 29422087 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the spatial and temporal dynamics of the dengue vector population established in urban areas of Fernando de Noronha, a Brazilian oceanic island. Regis LN; Acioli RV; Silveira JC; de Melo-Santos MA; da Cunha MC; Souza F; Batista CA; Barbosa RM; de Oliveira CM; Ayres CF; Monteiro AM; Souza WV Acta Trop; 2014 Sep; 137():80-7. PubMed ID: 24832009 [TBL] [Abstract][Full Text] [Related]
13. Using body size as an indicator for age structure in field populations of Aedes aegypti (Diptera: Culicidae). Gutiérrez EHJ; Riehle MA; Walker KR; Ernst KC; Davidowitz G Parasit Vectors; 2022 Dec; 15(1):483. PubMed ID: 36550576 [TBL] [Abstract][Full Text] [Related]
14. A Simple Model to Predict the Potential Abundance of Monaghan AJ; Schmidt CA; Hayden MH; Smith KA; Reiskind MH; Cabell R; Ernst KC Am J Trop Med Hyg; 2019 Feb; 100(2):434-437. PubMed ID: 30594264 [TBL] [Abstract][Full Text] [Related]
15. Role of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in local dengue epidemics in Taiwan. Tsai PJ; Teng HJ BMC Infect Dis; 2016 Nov; 16(1):662. PubMed ID: 27829399 [TBL] [Abstract][Full Text] [Related]
16. Intelligent monitoring of Aedes aegypti in a rural area of Rio de Janeiro State, Brazil. Sanavria A; Silva CBD; Electo ÉH; Nogueira LCR; Thomé SMG; Angelo IDC; Vita GF; Sanavria TEC; Padua ED; Gaiotte DG Rev Inst Med Trop Sao Paulo; 2017; 59():e51. PubMed ID: 28793020 [TBL] [Abstract][Full Text] [Related]
17. Effect of heavy-equipment aided environmental nebulization on Aedes aegypti vectors of Dengue, Zika and Chikungunya in São Paulo, Brazil. Piovezan R; Acorinthe JPO; Visockas A; de Azevedo TS; Von Zuben CJ Bull Entomol Res; 2017 Aug; 107(4):478-486. PubMed ID: 27974058 [TBL] [Abstract][Full Text] [Related]
18. A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia. Overgaard HJ; Olano VA; Jaramillo JF; Matiz MI; Sarmiento D; Stenström TA; Alexander N Parasit Vectors; 2017 Jul; 10(1):356. PubMed ID: 28750651 [TBL] [Abstract][Full Text] [Related]
19. Understanding the role of temporal variation of environmental variables in predicting Aedes aegypti oviposition activity in a temperate region of Argentina. Benitez EM; Estallo EL; Grech MG; Frías-Céspedes M; Almirón WR; Robert MA; Ludueña-Almeida FF Acta Trop; 2021 Apr; 216():105744. PubMed ID: 33189713 [TBL] [Abstract][Full Text] [Related]
20. Surveillance of dengue vectors using spatio-temporal Bayesian modeling. C Costa AC; Codeço CT; Honório NA; Pereira GR; N Pinheiro CF; Nobre AA BMC Med Inform Decis Mak; 2015 Nov; 15():93. PubMed ID: 26566610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]