BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28193451)

  • 1. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases.
    Guarino C; Hamon Y; Croix C; Lamort AS; Dallet-Choisy S; Marchand-Adam S; Lesner A; Baranek T; Viaud-Massuard MC; Lauritzen C; Pedersen J; Heuzé-Vourc'h N; Si-Tahar M; Fıratlı E; Jenne DE; Gauthier F; Horwitz MS; Borregaard N; Korkmaz B
    Biochem Pharmacol; 2017 May; 131():52-67. PubMed ID: 28193451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic targeting of cathepsin C: from pathophysiology to treatment.
    Korkmaz B; Caughey GH; Chapple I; Gauthier F; Hirschfeld J; Jenne DE; Kettritz R; Lalmanach G; Lamort AS; Lauritzen C; Łȩgowska M; Lesner A; Marchand-Adam S; McKaig SJ; Moss C; Pedersen J; Roberts H; Schreiber A; Seren S; Thakker NS
    Pharmacol Ther; 2018 Oct; 190():202-236. PubMed ID: 29842917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequences of cathepsin C inactivation for membrane exposure of proteinase 3, the target antigen in autoimmune vasculitis.
    Seren S; Rashed Abouzaid M; Eulenberg-Gustavus C; Hirschfeld J; Nasr Soliman H; Jerke U; N'Guessan K; Dallet-Choisy S; Lesner A; Lauritzen C; Schacher B; Eickholz P; Nagy N; Szell M; Croix C; Viaud-Massuard MC; Al Farraj Aldosari A; Ragunatha S; Ibrahim Mostafa M; Giampieri F; Battino M; Cornillier H; Lorette G; Stephan JL; Goizet C; Pedersen J; Gauthier F; Jenne DE; Marchand-Adam S; Chapple IL; Kettritz R; Korkmaz B
    J Biol Chem; 2018 Aug; 293(32):12415-12428. PubMed ID: 29925593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Papillon-Lefèvre syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase I deficiency in humans.
    Pham CT; Ivanovich JL; Raptis SZ; Zehnbauer B; Ley TJ
    J Immunol; 2004 Dec; 173(12):7277-81. PubMed ID: 15585850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BI 1291583: a novel selective inhibitor of cathepsin C with superior in vivo profile for the treatment of bronchiectasis.
    Kreideweiss S; Schänzle G; Schnapp G; Vintonyak V; Grundl MA
    Inflamm Res; 2023 Aug; 72(8):1709-1717. PubMed ID: 37542002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lung Protection by Cathepsin C Inhibition: A New Hope for COVID-19 and ARDS?
    Korkmaz B; Lesner A; Marchand-Adam S; Moss C; Jenne DE
    J Med Chem; 2020 Nov; 63(22):13258-13265. PubMed ID: 32692176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathepsin C inhibition as a potential treatment strategy in cancer.
    Korkmaz B; Lamort AS; Domain R; Beauvillain C; Gieldon A; Yildirim AÖ; Stathopoulos GT; Rhimi M; Jenne DE; Kettritz R
    Biochem Pharmacol; 2021 Dec; 194():114803. PubMed ID: 34678221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutrophilic Cathepsin C Is Maturated by a Multistep Proteolytic Process and Secreted by Activated Cells during Inflammatory Lung Diseases.
    Hamon Y; Legowska M; Hervé V; Dallet-Choisy S; Marchand-Adam S; Vanderlynden L; Demonte M; Williams R; Scott CJ; Si-Tahar M; Heuzé-Vourc'h N; Lalmanach G; Jenne DE; Lesner A; Gauthier F; Korkmaz B
    J Biol Chem; 2016 Apr; 291(16):8486-99. PubMed ID: 26884336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cathepsin C role in inflammatory gastroenterological, renal, rheumatic, and pulmonary disorders.
    Aghdassi AA; Pham C; Zierke L; Mariaule V; Korkmaz B; Rhimi M
    Biochimie; 2024 Jan; 216():175-180. PubMed ID: 37758158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rare CTSC mutation in Papillon-Lefèvre Syndrome results in abolished serine protease activity and reduced NET formation but otherwise normal neutrophil function.
    Sanchez Klose FP; Björnsdottir H; Dahlstrand Rudin A; Persson T; Khamzeh A; Sundqvist M; Thorbert-Mros S; Dieckmann R; Christenson K; Bylund J
    PLoS One; 2021; 16(12):e0261724. PubMed ID: 34932608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses.
    Sørensen OE; Clemmensen SN; Dahl SL; Østergaard O; Heegaard NH; Glenthøj A; Nielsen FC; Borregaard N
    J Clin Invest; 2014 Oct; 124(10):4539-48. PubMed ID: 25244098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based design and in vivo anti-arthritic activity evaluation of a potent dipeptidyl cyclopropyl nitrile inhibitor of cathepsin C.
    Korkmaz B; Lesner A; Wysocka M; Gieldon A; Håkansson M; Gauthier F; Logan DT; Jenne DE; Lauritzen C; Pedersen J
    Biochem Pharmacol; 2019 Jun; 164():349-367. PubMed ID: 30978322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Cathepsin C in PR3-ANCA Vasculitis.
    Jerke U; Eulenberg-Gustavus C; Rousselle A; Nicklin P; Kreideweiss S; Grundl MA; Eickholz P; Nickles K; Schreiber A; Korkmaz B; Kettritz R
    J Am Soc Nephrol; 2022 May; 33(5):936-947. PubMed ID: 35292437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic utility and medicinal chemistry of cathepsin C inhibitors.
    Guay D; Beaulieu C; Percival MD
    Curr Top Med Chem; 2010; 10(7):708-16. PubMed ID: 20337582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of urinary cathepsin C for diagnosing Papillon-Lefèvre syndrome.
    Hamon Y; Legowska M; Fergelot P; Dallet-Choisy S; Newell L; Vanderlynden L; Kord Valeshabad A; Acrich K; Kord H; Charalampos T; Morice-Picard F; Surplice I; Zoidakis J; David K; Vlahou A; Ragunatha S; Nagy N; Farkas K; Széll M; Goizet C; Schacher B; Battino M; Al Farraj Aldosari A; Wang X; Liu Y; Marchand-Adam S; Lesner A; Kara E; Korkmaz-Icöz S; Moss C; Eickholz P; Taieb A; Kavukcu S; Jenne DE; Gauthier F; Korkmaz B
    FEBS J; 2016 Feb; 283(3):498-509. PubMed ID: 26607765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases.
    Korkmaz B; Horwitz MS; Jenne DE; Gauthier F
    Pharmacol Rev; 2010 Dec; 62(4):726-59. PubMed ID: 21079042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing of Neutrophil α-Defensins Does Not Rely on Serine Proteases In Vivo.
    Glenthøj A; Nickles K; Cowland J; Borregaard N
    PLoS One; 2015; 10(5):e0125483. PubMed ID: 25945506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the activation of multiple serine proteases with a cathepsin C inhibitor requires sustained exposure to prevent pro-enzyme processing.
    Méthot N; Rubin J; Guay D; Beaulieu C; Ethier D; Reddy TJ; Riendeau D; Percival MD
    J Biol Chem; 2007 Jul; 282(29):20836-46. PubMed ID: 17535802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagic dysfunction in patients with Papillon-Lefèvre syndrome is restored by recombinant cathepsin C treatment.
    Bullón P; Castejón-Vega B; Román-Malo L; Jimenez-Guerrero MP; Cotán D; Forbes-Hernandez TY; Varela-López A; Pérez-Pulido AJ; Giampieri F; Quiles JL; Battino M; Sánchez-Alcázar JA; Cordero MD
    J Allergy Clin Immunol; 2018 Oct; 142(4):1131-1143.e7. PubMed ID: 29410039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo inhibition of serine protease processing requires a high fractional inhibition of cathepsin C.
    Méthot N; Guay D; Rubin J; Ethier D; Ortega K; Wong S; Normandin D; Beaulieu C; Reddy TJ; Riendeau D; Percival MD
    Mol Pharmacol; 2008 Jun; 73(6):1857-65. PubMed ID: 18326050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.