These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28193497)

  • 1. I act, therefore I err: EEG correlates of success and failure in a virtual throwing game.
    Yazmir B; Reiner M
    Int J Psychophysiol; 2017 Dec; 122():32-41. PubMed ID: 28193497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Correlates of User-initiated Motor Success and Failure - A Brain-Computer Interface Perspective.
    Yazmir B; Reiner M
    Neuroscience; 2018 May; 378():100-112. PubMed ID: 27816702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring brain potentials to guide neurorehabilitation of tracking impairments.
    Yazmir B; Reiner M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():983-988. PubMed ID: 28813949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Signatures of Interface Errors in Remote Agent Manipulation.
    Yazmir B; Reiner M
    Neuroscience; 2022 Mar; 486():62-76. PubMed ID: 33639224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interface: changes in performance using virtual reality techniques.
    Ron-Angevin R; Díaz-Estrella A
    Neurosci Lett; 2009 Jan; 449(2):123-7. PubMed ID: 19000739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective.
    Pavone EF; Tieri G; Rizza G; Tidoni E; Grisoni L; Aglioti SM
    J Neurosci; 2016 Jan; 36(2):268-79. PubMed ID: 26758821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain negativity as an indicator of predictive error processing: the contribution of visual action effect monitoring.
    Joch M; Hegele M; Maurer H; Müller H; Maurer LK
    J Neurophysiol; 2017 Jul; 118(1):486-495. PubMed ID: 28446578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contingent negative variation (CNV) associated with sensorimotor timing error correction.
    Jang J; Jones M; Milne E; Wilson D; Lee KH
    Neuroimage; 2016 Feb; 127():58-66. PubMed ID: 26666899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Violating body movement semantics: Neural signatures of self-generated and external-generated errors.
    Padrao G; Gonzalez-Franco M; Sanchez-Vives MV; Slater M; Rodriguez-Fornells A
    Neuroimage; 2016 Jan; 124(Pt A):147-156. PubMed ID: 26282856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological correlates of learning by performance feedback in children: a study of EEG event-related potentials and evoked heart rate.
    Groen Y; Wijers AA; Mulder LJ; Minderaa RB; Althaus M
    Biol Psychol; 2007 Oct; 76(3):174-87. PubMed ID: 17888560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the processing of sensory and reward-prediction errors involve common neural resources? Evidence from a frontocentral negative potential modulated by movement execution errors.
    Torrecillos F; Albouy P; Brochier T; Malfait N
    J Neurosci; 2014 Apr; 34(14):4845-56. PubMed ID: 24695704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibility of reinforcement learning based on event-related potential.
    Yamagishi Y; Tsubone T; Wada Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():654-7. PubMed ID: 19162740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online detection of error-related potentials boosts the performance of mental typewriters.
    Schmidt NM; Blankertz B; Treder MS
    BMC Neurosci; 2012 Feb; 13():19. PubMed ID: 22336293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Error-related EEG potentials generated during simulated brain-computer interaction.
    Ferrez PW; del R Millan J
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural stimuli from three coherent modalities enhance behavioral responses and electrophysiological cortical activity in humans.
    Sella I; Reiner M; Pratt H
    Int J Psychophysiol; 2014 Jul; 93(1):45-55. PubMed ID: 24315926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in event-related potentials associated with postural adaptation during floor oscillation.
    Fujiwara K; Maeda K; Irei M; Mammadova A; Kiyota N
    Neuroscience; 2012 Jun; 213():122-32. PubMed ID: 22516016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perceptual Salience and Reward Both Influence Feedback-Related Neural Activity Arising from Choice.
    Lou B; Hsu WY; Sajda P
    J Neurosci; 2015 Sep; 35(38):13064-75. PubMed ID: 26400937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroelectric adaptations to cognitive processing in virtual environments: an exercise-related approach.
    Vogt T; Herpers R; Scherfgen D; Strüder HK; Schneider S
    Exp Brain Res; 2015 Apr; 233(4):1321-9. PubMed ID: 25630906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.