These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1244 related articles for article (PubMed ID: 28193684)
21. PD-L1 Improves Motor Function and Alleviates Neuropathic Pain in Male Mice After Spinal Cord Injury by Inhibiting MAPK Pathway. Kong F; Sun K; Zhu J; Li F; Lin F; Sun X; Luo X; Ren C; Lu L; Zhao S; Sun J; Wang Y; Shi J Front Immunol; 2021; 12():670646. PubMed ID: 33936116 [TBL] [Abstract][Full Text] [Related]
23. Apolipoprotein E as a novel therapeutic neuroprotection target after traumatic spinal cord injury. Cheng X; Zheng Y; Bu P; Qi X; Fan C; Li F; Kim DH; Cao Q Exp Neurol; 2018 Jan; 299(Pt A):97-108. PubMed ID: 29056364 [TBL] [Abstract][Full Text] [Related]
24. Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand. Cohen M; Ben-Yehuda H; Porat Z; Raposo C; Gordon S; Schwartz M J Neurosci; 2017 Jan; 37(4):972-985. PubMed ID: 28123029 [TBL] [Abstract][Full Text] [Related]
25. Histone Deacetylase 3 Inhibition Ameliorates Microglia-Mediated Neuro-Inflammation Via the SIRT1/Nrf2 Pathway After Traumatic Spinal Cord Injury. Chen S; Ye J; Wu G; Shi J; Li X; Chen X; Wu W Neurorehabil Neural Repair; 2023 Aug; 37(8):503-518. PubMed ID: 37503724 [TBL] [Abstract][Full Text] [Related]
26. Beneficial effects of thymosin β4 on spinal cord injury in the rat. Cheng P; Kuang F; Zhang H; Ju G; Wang J Neuropharmacology; 2014 Oct; 85():408-16. PubMed ID: 24937047 [TBL] [Abstract][Full Text] [Related]
27. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Ma SF; Chen YJ; Zhang JX; Shen L; Wang R; Zhou JS; Hu JG; Lü HZ Brain Behav Immun; 2015 Mar; 45():157-70. PubMed ID: 25476600 [TBL] [Abstract][Full Text] [Related]
28. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Hong JY; Seo Y; Davaa G; Kim HW; Kim SH; Hyun JK Acta Biomater; 2020 Jan; 101():357-371. PubMed ID: 31711898 [TBL] [Abstract][Full Text] [Related]
29. Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls. Hashimoto M; Sun D; Rittling SR; Denhardt DT; Young W J Neurosci; 2007 Mar; 27(13):3603-11. PubMed ID: 17392476 [TBL] [Abstract][Full Text] [Related]
31. MIC-1/GDF15 Overexpression Is Associated with Increased Functional Recovery in Traumatic Spinal Cord Injury. Hassanpour Golakani M; Mohammad MG; Li H; Gamble J; Breit SN; Ruitenberg MJ; Brown DA J Neurotrauma; 2019 Dec; 36(24):3410-3421. PubMed ID: 31232176 [TBL] [Abstract][Full Text] [Related]
32. Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury. Zhang B; Bailey WM; Braun KJ; Gensel JC Exp Neurol; 2015 Nov; 273():83-91. PubMed ID: 26263843 [TBL] [Abstract][Full Text] [Related]
33. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media. Guo L; Rolfe AJ; Wang X; Tai W; Cheng Z; Cao K; Chen X; Xu Y; Sun D; Li J; He X; Young W; Fan J; Ren Y Mol Brain; 2016 May; 9(1):48. PubMed ID: 27153974 [TBL] [Abstract][Full Text] [Related]
34. The Serum SIRT1 Protein is Associated with the Severity of Injury and Neurological Recovery in Mice with Traumatic Spinal Cord Injury. Zhong G; Yang Y; Huang X; Chen J; Feng D; Wei K; Chen J; Chen H Neuroscience; 2021 Aug; 469():103-109. PubMed ID: 34171408 [TBL] [Abstract][Full Text] [Related]
35. Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice. López-Vales R; Redensek A; Skinner TA; Rathore KI; Ghasemlou N; Wojewodka G; DeSanctis J; Radzioch D; David S J Neurosci; 2010 Mar; 30(9):3220-6. PubMed ID: 20203181 [TBL] [Abstract][Full Text] [Related]
36. IL-1α Gene Deletion Protects Oligodendrocytes after Spinal Cord Injury through Upregulation of the Survival Factor Tox3. Bastien D; Bellver Landete V; Lessard M; Vallières N; Champagne M; Takashima A; Tremblay MÈ; Doyon Y; Lacroix S J Neurosci; 2015 Jul; 35(30):10715-30. PubMed ID: 26224856 [TBL] [Abstract][Full Text] [Related]
37. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Pomeshchik Y; Kidin I; Korhonen P; Savchenko E; Jaronen M; Lehtonen S; Wojciechowski S; Kanninen K; Koistinaho J; Malm T Brain Behav Immun; 2015 Feb; 44():68-81. PubMed ID: 25153903 [TBL] [Abstract][Full Text] [Related]
38. Complement C5a is detrimental to histological and functional locomotor recovery after spinal cord injury in mice. Li L; Xiong ZY; Qian ZM; Zhao TZ; Feng H; Hu S; Hu R; Ke Y; Lin J Neurobiol Dis; 2014 Jun; 66():74-82. PubMed ID: 24607885 [TBL] [Abstract][Full Text] [Related]
39. Caffeic acid phenethyl ester inhibits neuro-inflammation and oxidative stress following spinal cord injury by mitigating mitochondrial dysfunction via the SIRT1/PGC1α/DRP1 signaling pathway. Zhang Y; Deng Q; Hong H; Qian Z; Wan B; Xia M J Transl Med; 2024 Mar; 22(1):304. PubMed ID: 38528569 [TBL] [Abstract][Full Text] [Related]
40. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Chen J; Wang Z; Zheng Z; Chen Y; Khor S; Shi K; He Z; Wang Q; Zhao Y; Zhang H; Li X; Li J; Yin J; Wang X; Xiao J Cell Death Dis; 2017 Oct; 8(10):e3090. PubMed ID: 28981091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]