BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28193706)

  • 1. Small Vessels, Big Role: Renal Microcirculation and Progression of Renal Injury.
    Chade AR
    Hypertension; 2017 Apr; 69(4):551-563. PubMed ID: 28193706
    [No Abstract]   [Full Text] [Related]  

  • 2. The macro- and microcirculation of the kidney.
    Guerci P; Ergin B; Ince C
    Best Pract Res Clin Anaesthesiol; 2017 Sep; 31(3):315-329. PubMed ID: 29248139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inflammation: A Key Contributor to the Genesis and Progression of Chronic Kidney Disease.
    Qian Q
    Contrib Nephrol; 2017; 191():72-83. PubMed ID: 28910792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renovascular disease, microcirculation, and the progression of renal injury: role of angiogenesis.
    Chade AR
    Am J Physiol Regul Integr Comp Physiol; 2011 Apr; 300(4):R783-90. PubMed ID: 21307362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of renal microcirculation in experimental renovascular disease.
    Iliescu R; Fernandez SR; Kelsen S; Maric C; Chade AR
    Nephrol Dial Transplant; 2010 Apr; 25(4):1079-87. PubMed ID: 19934087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The brain and the kidney connection: A model of accelerated vascular cognitive impairment.
    Murray AM
    Neurology; 2009 Sep; 73(12):916-7. PubMed ID: 19692675
    [No Abstract]   [Full Text] [Related]  

  • 7. Comment on Legrand et al.: The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats.
    Ji MH; Sun J; Yang JJ; Liu YX; Peng YG
    Intensive Care Med; 2012 Feb; 38(2):335; author reply 336. PubMed ID: 22147113
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of the Renal Microcirculation in Progression of Chronic Kidney Injury in Obesity.
    Chade AR; Hall JE
    Am J Nephrol; 2016; 44(5):354-367. PubMed ID: 27771702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of renal microvascular function by adenosine.
    Inscho EW
    Am J Physiol Regul Integr Comp Physiol; 2003 Jul; 285(1):R23-5. PubMed ID: 12793988
    [No Abstract]   [Full Text] [Related]  

  • 10. Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat.
    Maric-Bilkan C; Flynn ER; Chade AR
    Am J Physiol Renal Physiol; 2012 Feb; 302(3):F308-15. PubMed ID: 22031855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoring the renal microvasculature to treat chronic kidney disease.
    Long DA; Norman JT; Fine LG
    Nat Rev Nephrol; 2012 Feb; 8(4):244-50. PubMed ID: 22310952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Renal microcirculation].
    Tamaki T
    Nihon Rinsho; 2000 Jan; 58 Suppl 1():321-4. PubMed ID: 11026283
    [No Abstract]   [Full Text] [Related]  

  • 13. Link of renal microcirculatory dysfunction to increased coronary microcirculatory resistance in hypertensive patients.
    Lin C; Zhang P; Xue Y; Huang Y; Ji K
    Cardiol J; 2017; 24(6):623-632. PubMed ID: 28653312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal circulation and microcirculation during intra-abdominal hypertension in a porcine model.
    Sui F; Zheng Y; Li WX; Zhou JL
    Eur Rev Med Pharmacol Sci; 2016; 20(3):452-61. PubMed ID: 26914119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Administration of Tetrahydrobiopterin (BH4) Protects the Renal Microcirculation From Ischemia and Reperfusion Injury.
    Rahmania L; Orbegozo D; Su F; Taccone FS; Vincent JL; De Backer D
    Anesth Analg; 2017 Oct; 125(4):1253-1260. PubMed ID: 28632534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A translational model of chronic kidney disease in swine.
    Chade AR; Williams ML; Engel J; Guise E; Harvey TW
    Am J Physiol Renal Physiol; 2018 Aug; 315(2):F364-F373. PubMed ID: 29693449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis.
    Greite R; Thorenz A; Chen R; Jang MS; Rong S; Brownstein MJ; Tewes S; Wang L; Baniassad B; Kirsch T; Bräsen JH; Lichtinghagen R; Meier M; Haller H; Hueper K; Gueler F
    Am J Physiol Renal Physiol; 2018 May; 314(5):F881-F892. PubMed ID: 29357437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution three-dimensional digital imaging of the human renal microcirculation: An aid to evaluating microvascular alterations in chronic kidney disease in humans.
    Uesugi N; Shimazu Y; Aoba T; Kikuchi K; Nagata M
    Pathol Int; 2015 Nov; 65(11):575-84. PubMed ID: 26289029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Renal microcirculation].
    Tamaki T; Yoshizumi M
    Nihon Yakurigaku Zasshi; 1999 Apr; 113(4):261-7. PubMed ID: 10412164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the renal microcirculation in antihypertensive therapy.
    Inman SR; Stowe NT; Vidt DG
    Cleve Clin J Med; 1994; 61(5):356-62. PubMed ID: 7955308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.