These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28194106)

  • 1. ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.
    Schilling M; Cruse H
    Front Neurorobot; 2017; 11():3. PubMed ID: 28194106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How and to what end may consciousness contribute to action? Attributing properties of consciousness to an embodied, minimally cognitive artificial neural network.
    Cruse H; Schilling M
    Front Psychol; 2013; 4():324. PubMed ID: 23785343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What's Next: Recruitment of a Grounded Predictive Body Model for Planning a Robot's Actions.
    Schilling M; Cruse H
    Front Psychol; 2012; 3():383. PubMed ID: 23060845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots.
    Dasgupta S; Goldschmidt D; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():10. PubMed ID: 26441629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hexapod walker using a heterarchical architecture for action selection.
    Schilling M; Paskarbeit J; Hoinville T; Hüffmeier A; Schneider A; Schmitz J; Cruse H
    Front Comput Neurosci; 2013; 7():126. PubMed ID: 24062682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Children's questions: a mechanism for cognitive development.
    Chouinard MM
    Monogr Soc Res Child Dev; 2007; 72(1):vii-ix, 1-112; discussion 113-26. PubMed ID: 17394580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embodied Dyadic Interaction Increases Complexity of Neural Dynamics: A Minimal Agent-Based Simulation Model.
    Candadai M; Setzler M; Izquierdo EJ; Froese T
    Front Psychol; 2019; 10():540. PubMed ID: 30949089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System.
    Arena E; Arena P; Strauss R; Patané L
    Front Neurorobot; 2017; 11():12. PubMed ID: 28337138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Action to Cognition: Neural Reuse, Network Theory and the Emergence of Higher Cognitive Functions.
    Ptak R; Doganci N; Bourgeois A
    Brain Sci; 2021 Dec; 11(12):. PubMed ID: 34942954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models.
    Alexandridis A; Stogiannos M; Papaioannou N; Zois E; Sarimveis H
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29361781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated technology for evaluation of brain function and neural plasticity.
    Rossini PM; Dal Forno G
    Phys Med Rehabil Clin N Am; 2004 Feb; 15(1):263-306. PubMed ID: 15029909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of complex movements using artificial neural networks.
    Cruse H; Dean J; Kindermann T; Schmitz J; Schumm M
    Z Naturforsch C J Biosci; 1998; 53(7-8):628-38. PubMed ID: 9755516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dorsal Frontoparietal Network: A Core System for Emulated Action.
    Ptak R; Schnider A; Fellrath J
    Trends Cogn Sci; 2017 Aug; 21(8):589-599. PubMed ID: 28578977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural network architecture for cognitive navigation in dynamic environments.
    Villacorta-Atienza JA; Makarov VA
    IEEE Trans Neural Netw Learn Syst; 2013 Dec; 24(12):2075-87. PubMed ID: 24805224
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.