BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 28194144)

  • 1. Trophic Interactions of Infant Bifidobacteria and
    Schwab C; Ruscheweyh HJ; Bunesova V; Pham VT; Beerenwinkel N; Lacroix C
    Front Microbiol; 2017; 8():95. PubMed ID: 28194144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense.
    Bunesova V; Lacroix C; Schwab C
    BMC Microbiol; 2016 Oct; 16(1):248. PubMed ID: 27782805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii.
    Bunesova V; Lacroix C; Schwab C
    Microb Ecol; 2018 Jan; 75(1):228-238. PubMed ID: 28721502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale metabolic modeling of the human milk oligosaccharide utilization by
    Román L; Melis-Arcos F; Pröschle T; Saa PA; Garrido D
    mSystems; 2024 Mar; 9(3):e0071523. PubMed ID: 38363147
    [No Abstract]   [Full Text] [Related]  

  • 5. Novel Genes and Metabolite Trends in Bifidobacterium longum subsp. infantis Bi-26 Metabolism of Human Milk Oligosaccharide 2'-fucosyllactose.
    Zabel B; Yde CC; Roos P; Marcussen J; Jensen HM; Salli K; Hirvonen J; Ouwehand AC; Morovic W
    Sci Rep; 2019 May; 9(1):7983. PubMed ID: 31138818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut.
    Sims IM; Tannock GW
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation.
    Engels C; Ruscheweyh HJ; Beerenwinkel N; Lacroix C; Schwab C
    Front Microbiol; 2016; 7():713. PubMed ID: 27242734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fucosylated Human Milk Oligosaccharides Drive Structure-Specific Syntrophy between Bifidobacterium infantis and Eubacterium hallii within a Modeled Infant Gut Microbiome.
    Dedon LR; Hilliard MA; Rani A; Daza-Merchan ZT; Story G; Briere CE; Sela DA
    Mol Nutr Food Res; 2023 Jun; 67(11):e2200851. PubMed ID: 36938958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR.
    Arzamasov AA; Nakajima A; Sakanaka M; Ojima MN; Katayama T; Rodionov DA; Osterman AL
    mSystems; 2022 Oct; 7(5):e0034322. PubMed ID: 36094076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Different Human Milk Oligosaccharides on Growth of
    Cheng L; Kiewiet MBG; Logtenberg MJ; Groeneveld A; Nauta A; Schols HA; Walvoort MTC; Harmsen HJM; de Vos P
    Front Microbiol; 2020; 11():569700. PubMed ID: 33193162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.
    Asakuma S; Hatakeyama E; Urashima T; Yoshida E; Katayama T; Yamamoto K; Kumagai H; Ashida H; Hirose J; Kitaoka M
    J Biol Chem; 2011 Oct; 286(40):34583-92. PubMed ID: 21832085
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Dedon LR; Özcan E; Rani A; Sela DA
    Front Nutr; 2020; 7():583397. PubMed ID: 33330584
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Lawley B; Centanni M; Watanabe J; Sims I; Carnachan S; Broadbent R; Lee PS; Wong KH; Tannock GW
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29703739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization.
    LoCascio RG; Desai P; Sela DA; Weimer B; Mills DA
    Appl Environ Microbiol; 2010 Nov; 76(22):7373-81. PubMed ID: 20802066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.
    Garrido D; Ruiz-Moyano S; Lemay DG; Sela DA; German JB; Mills DA
    Sci Rep; 2015 Sep; 5():13517. PubMed ID: 26337101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human milk oligosaccharide-sharing by a consortium of infant derived Bifidobacterium species.
    Walsh C; Lane JA; van Sinderen D; Hickey RM
    Sci Rep; 2022 Mar; 12(1):4143. PubMed ID: 35264656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria.
    Ward RE; Niñonuevo M; Mills DA; Lebrilla CB; German JB
    Mol Nutr Food Res; 2007 Nov; 51(11):1398-405. PubMed ID: 17966141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596.
    Garrido D; Ruiz-Moyano S; Kirmiz N; Davis JC; Totten SM; Lemay DG; Ugalde JA; German JB; Lebrilla CB; Mills DA
    Sci Rep; 2016 Oct; 6():35045. PubMed ID: 27756904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversification of a Fucosyllactose Transporter within the Genus
    Ojima MN; Asao Y; Nakajima A; Katoh T; Kitaoka M; Gotoh A; Hirose J; Urashima T; Fukiya S; Yokota A; Abou Hachem M; Sakanaka M; Katayama T
    Appl Environ Microbiol; 2022 Jan; 88(2):e0143721. PubMed ID: 34731055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the synbiotic properites of human milk oligosaccharides and Bifidobacterium longum subsp. infantis in vitro and in humanised mice.
    Musilova S; Modrackova N; Hermanova P; Hudcovic T; Svejstil R; Rada V; Tejnecky V; Bunesova V
    Benef Microbes; 2017 Apr; 8(2):281-289. PubMed ID: 28116928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.