BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28194175)

  • 1. MOBAS: identification of disease-associated protein subnetworks using modularity-based scoring.
    Ayati M; Erten S; Chance MR; Koyutürk M
    EURASIP J Bioinform Syst Biol; 2015 Dec; 2015():7. PubMed ID: 28194175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of differentially expressed subnetworks based on multivariate ANOVA.
    Hwang T; Park T
    BMC Bioinformatics; 2009 Apr; 10():128. PubMed ID: 19405941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NoMAS: A Computational Approach to Find Mutated Subnetworks Associated With Survival in Genome-Wide Cancer Studies.
    Altieri F; Hansen TV; Vandin F
    Front Genet; 2019; 10():265. PubMed ID: 31024613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NetMix2: A Principled Network Propagation Algorithm for Identifying Altered Subnetworks.
    Chitra U; Park TY; Raphael BJ
    J Comput Biol; 2022 Dec; 29(12):1305-1323. PubMed ID: 36525308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.
    Duan S; Luo X; Dong C
    Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compendium of human genes regulating feeding behavior and body weight, its functional characterization and identification of GWAS genes involved in brain-specific PPI network.
    Ignatieva EV; Afonnikov DA; Saik OV; Rogaev EI; Kolchanov NA
    BMC Genet; 2016 Dec; 17(Suppl 3):158. PubMed ID: 28105929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly adaptive tests for group differences in brain functional connectivity.
    Kim J; Pan W;
    Neuroimage Clin; 2015; 9():625-39. PubMed ID: 26740916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of multiple biological features yields high confidence human protein interactome.
    Karagoz K; Sevimoglu T; Arga KY
    J Theor Biol; 2016 Aug; 403():85-96. PubMed ID: 27196966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of highly connected and differentially expressed gene subnetworks in metastasizing endometrial cancer.
    Kusonmano K; Halle MK; Wik E; Hoivik EA; Krakstad C; Mauland KK; Tangen IL; Berg A; Werner HMJ; Trovik J; Øyan AM; Kalland KH; Jonassen I; Salvesen HB; Petersen K
    PLoS One; 2018; 13(11):e0206665. PubMed ID: 30383835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying stage-specific protein subnetworks for colorectal cancer.
    Erten S; Chowdhury SA; Guan X; Nibbe RK; Barnholtz-Sloan JS; Chance MR; Koyutürk M
    BMC Proc; 2012 Nov; 6 Suppl 7(Suppl 7):S1. PubMed ID: 23173715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies.
    Cheng M; Liu X; Yang M; Han L; Xu A; Huang Q
    J Diabetes; 2017 Apr; 9(4):362-377. PubMed ID: 27121852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering regulatory and signalling circuits in molecular interaction networks.
    Ideker T; Ozier O; Schwikowski B; Siegel AF
    Bioinformatics; 2002; 18 Suppl 1():S233-40. PubMed ID: 12169552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Method for Extracting Hierarchical Functional Subnetworks Based on a Multisubject Spectral Clustering Approach.
    Liang X; Yeh CH; Connelly A; Calamante F
    Brain Connect; 2019 Jun; 9(5):399-414. PubMed ID: 30880430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical HotNet: identifying hierarchies of altered subnetworks.
    Reyna MA; Leiserson MDM; Raphael BJ
    Bioinformatics; 2018 Sep; 34(17):i972-i980. PubMed ID: 30423088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping.
    Lo YS; Huang SH; Luo YC; Lin CY; Yang JM
    PLoS One; 2015; 10(1):e0116347. PubMed ID: 25602759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein-Protein Interaction Networks.
    Yang L; Chen R; Melendy T; Goodison S; Sun Y
    Cancers (Basel); 2023 Aug; 15(16):. PubMed ID: 37627118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The construction of common and specific significance subnetworks of Alzheimer's disease from multiple brain regions.
    Kong W; Mou X; Zhang N; Zeng W; Li S; Yang Y
    Biomed Res Int; 2015; 2015():394260. PubMed ID: 25866779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.