These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28194413)
1. Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based on Safety-Motion Decision-Making Mechanism. Pan L; Song A; Duan S; Yu Z Biomed Res Int; 2017; 2017():4185939. PubMed ID: 28194413 [TBL] [Abstract][Full Text] [Related]
2. Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism. Lin Y; Qu Q; Lin Y; He J; Zhang Q; Wang C; Jiang Z; Guo F; Jia J Biomed Res Int; 2021; 2021():9972560. PubMed ID: 34195289 [TBL] [Abstract][Full Text] [Related]
3. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation. Pan L; Song A; Duan S; Xu B Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061 [TBL] [Abstract][Full Text] [Related]
4. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
5. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265 [TBL] [Abstract][Full Text] [Related]
6. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities. Eiammanussakul T; Sangveraphunsiri V J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109 [TBL] [Abstract][Full Text] [Related]
7. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy. Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226 [TBL] [Abstract][Full Text] [Related]
8. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot. Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581 [TBL] [Abstract][Full Text] [Related]
9. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related]
10. Hybrid position and orientation tracking for a passive rehabilitation table-top robot. Wojewoda KK; Culmer PR; Gallagher JF; Jackson AE; Levesley MC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():702-707. PubMed ID: 28813902 [TBL] [Abstract][Full Text] [Related]
11. Rehabilitation for hemiplegia using an upper limb training system based on a force direction. Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875 [TBL] [Abstract][Full Text] [Related]
12. Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients. Panarese A; Colombo R; Sterpi I; Pisano F; Micera S Neurorehabil Neural Repair; 2012 Sep; 26(7):822-33. PubMed ID: 22374174 [TBL] [Abstract][Full Text] [Related]
13. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L J Healthc Eng; 2017; 2017():1523068. PubMed ID: 29065571 [TBL] [Abstract][Full Text] [Related]
14. Experimental Study on Upper-Limb Rehabilitation Training of Stroke Patients Based on Adaptive Task Level: A Preliminary Study. Pan L; Song A; Wang S; Duan S Biomed Res Int; 2019; 2019():2742595. PubMed ID: 30915351 [TBL] [Abstract][Full Text] [Related]
15. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755 [TBL] [Abstract][Full Text] [Related]
16. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Volpe BT; Lynch D; Rykman-Berland A; Ferraro M; Galgano M; Hogan N; Krebs HI Neurorehabil Neural Repair; 2008; 22(3):305-10. PubMed ID: 18184932 [TBL] [Abstract][Full Text] [Related]
17. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205 [TBL] [Abstract][Full Text] [Related]
18. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498 [TBL] [Abstract][Full Text] [Related]
19. Validation of bimanual-coordinated training supported by a new upper-limb rehabilitation robot: a near-infrared spectroscopy study. Li C; Inoue Y; Liu T; Sun L Disabil Rehabil Assist Technol; 2013 Jan; 8(1):38-48. PubMed ID: 22471649 [TBL] [Abstract][Full Text] [Related]
20. An optimized design of a parallel robot for gait training. Maddalena M; Saadat M; Rastegarpanah A; Loureiro RCV IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():418-423. PubMed ID: 28813855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]