These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 28194942)
21. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer. Zhang K; Zhong C; Liu S; Mu C; Li Z; Yan H; Huang F; Cao Y ACS Appl Mater Interfaces; 2014 Jul; 6(13):10429-35. PubMed ID: 24923366 [TBL] [Abstract][Full Text] [Related]
22. Orienting the Microstructure Evolution of Copper Phthalocyanine as an Anode Interlayer in Inverted Polymer Solar Cells for High Performance. Li Z; Liu C; Zhang X; Li S; Zhang X; Guo J; Guo W; Zhang L; Ruan S ACS Appl Mater Interfaces; 2017 Sep; 9(37):32044-32053. PubMed ID: 28836429 [TBL] [Abstract][Full Text] [Related]
23. Enhanced performance and morphological evolution of PTB7:PC71BM polymer solar cells by using solvent mixtures with different additives. Huang D; Li Y; Xu Z; Zhao S; Zhao L; Zhao J Phys Chem Chem Phys; 2015 Mar; 17(12):8053-60. PubMed ID: 25729790 [TBL] [Abstract][Full Text] [Related]
24. Functionalized Graphene Oxide Enables a High-Performance Bulk Heterojunction Organic Solar Cell with a Thick Active Layer. Lyu CK; Zheng F; Babu BH; Niu MS; Feng L; Yang JL; Qin W; Hao XT J Phys Chem Lett; 2018 Nov; 9(21):6238-6248. PubMed ID: 30240225 [TBL] [Abstract][Full Text] [Related]
25. Strontium Fluoride and Zinc Oxide Stacked Structure as an Interlayer in High-Performance Inverted Polymer Solar Cells. Huang S; Pang Y; Li X; Wang Y; Yu A; Tang Y; Kang B; Silva SRP; Lu G ACS Appl Mater Interfaces; 2019 Jan; 11(2):2149-2158. PubMed ID: 30582327 [TBL] [Abstract][Full Text] [Related]
26. Effect of PTB7 Properties on the Performance of PTB7:PC₇₁BM Solar Cells. To CH; Ng A; Dong Q; Djurišić AB; Zapien JA; Chan WK; Surya C ACS Appl Mater Interfaces; 2015 Jun; 7(24):13198-207. PubMed ID: 26039900 [TBL] [Abstract][Full Text] [Related]
27. The influence of binary processing additives on the performance of polymer solar cells. Liu C; Hu X; Zhong C; Huang M; Wang K; Zhang Z; Gong X; Cao Y; Heeger AJ Nanoscale; 2014 Nov; 6(23):14297-304. PubMed ID: 25322278 [TBL] [Abstract][Full Text] [Related]
28. Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers. Huang S; Kang B; Duan L; Zhang D J Colloid Interface Sci; 2021 Feb; 583():178-187. PubMed ID: 33002690 [TBL] [Abstract][Full Text] [Related]
30. Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer. Jia X; Zhang L; Luo Q; Lu H; Li X; Xie Z; Yang Y; Li YQ; Liu X; Ma CQ ACS Appl Mater Interfaces; 2016 Jul; 8(28):18410-7. PubMed ID: 27349330 [TBL] [Abstract][Full Text] [Related]
31. Enhancing Lifetime and Efficiency of Organic Solar Cell by Applying an In Situ Synthesized Low-Crystalline ZnO Layer. Arabpour Roghabadi F; Ahmadi V; Abdollahi Nejand B; Oniy Aghmiuni K ChemSusChem; 2017 Jun; 10(11):2352-2359. PubMed ID: 28409897 [TBL] [Abstract][Full Text] [Related]
32. High-efficiency inverted polymer solar cells with double interlayer. Subbiah J; Amb CM; Irfan I; Gao Y; Reynolds JR; So F ACS Appl Mater Interfaces; 2012 Feb; 4(2):866-70. PubMed ID: 22225481 [TBL] [Abstract][Full Text] [Related]
33. Highly Efficient and Stable Organic Solar Cells via Interface Engineering with a Nanostructured ITR-GO/PFN Bilayer Cathode Interlayer. Zheng D; Zhao L; Fan P; Ji R; Yu J Nanomaterials (Basel); 2017 Aug; 7(9):. PubMed ID: 28832508 [TBL] [Abstract][Full Text] [Related]
34. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. Chang JY; Lin JM; Su LF; Chang CF ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511 [TBL] [Abstract][Full Text] [Related]
35. Well-defined star-shaped conjugated macroelectrolytes as efficient electron-collecting interlayer for inverted polymer solar cells. Xu W; Kan Z; Ye T; Zhao L; Lai WY; Xia R; Lanzani G; Keivanidis PE; Huang W ACS Appl Mater Interfaces; 2015 Jan; 7(1):452-9. PubMed ID: 25496704 [TBL] [Abstract][Full Text] [Related]
36. Reducing optical losses in organic solar cells using microlens arrays: theoretical and experimental investigation of microlens dimensions. Chen Y; Elshobaki M; Gebhardt R; Bergeson S; Noack M; Park JM; Hillier AC; Ho KM; Biswas R; Chaudhary S Phys Chem Chem Phys; 2015 Feb; 17(5):3723-30. PubMed ID: 25556607 [TBL] [Abstract][Full Text] [Related]
37. Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC Wang L; Zhao S; Xu Z; Zhao J; Huang D; Zhao L Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773297 [TBL] [Abstract][Full Text] [Related]
38. Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell. Xu R; Zhang K; Liu X; Jin Y; Jiang XF; Xu QH; Huang F; Cao Y ACS Appl Mater Interfaces; 2018 Jan; 10(2):1939-1947. PubMed ID: 29300450 [TBL] [Abstract][Full Text] [Related]
39. Self-Assembly of 1-Pyrenemethanol on ZnO Surface toward Combined Cathode Buffer Layers for Inverted Polymer Solar Cells. Cai X; Yuan T; Liu X; Tu G ACS Appl Mater Interfaces; 2017 Oct; 9(41):36082-36089. PubMed ID: 28967247 [TBL] [Abstract][Full Text] [Related]
40. Photoconductive Cathode Interlayer for Highly Efficient Inverted Polymer Solar Cells. Nian L; Zhang W; Zhu N; Liu L; Xie Z; Wu H; Würthner F; Ma Y J Am Chem Soc; 2015 Jun; 137(22):6995-8. PubMed ID: 26016386 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]