BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28194964)

  • 1. Direct Production of Microstructured Surfaces for Planar Chromatography Using 3D Printing.
    Macdonald NP; Currivan SA; Tedone L; Paull B
    Anal Chem; 2017 Feb; 89(4):2457-2463. PubMed ID: 28194964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open-Source-Based 3D Printing of Thin Silica Gel Layers in Planar Chromatography.
    Fichou D; Morlock GE
    Anal Chem; 2017 Feb; 89(3):2116-2122. PubMed ID: 28208299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation and mass transfer modelling of 3D printed monolithic cation exchangers.
    Sarwar MS; Simon U; Dimartino S
    J Chromatogr A; 2021 Jun; 1646():462125. PubMed ID: 33894456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct 3D printing of monolithic ion exchange adsorbers.
    Simon U; Dimartino S
    J Chromatogr A; 2019 Feb; 1587():119-128. PubMed ID: 30579643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniaturized planar chromatography using office peripherals--office chromatography.
    Morlock GE
    J Chromatogr A; 2015 Feb; 1382():87-96. PubMed ID: 25442326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface isoelectric focusing (sIEF) with carrier ampholyte pH gradient.
    Wang Z; Ivory C; Minerick AR
    Electrophoresis; 2017 Oct; 38(20):2565-2575. PubMed ID: 28722147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Micro Free-Flow Electrophoresis Device.
    Anciaux SK; Geiger M; Bowser MT
    Anal Chem; 2016 Aug; 88(15):7675-82. PubMed ID: 27377354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Office Chromatography: Precise printing of sample solutions on miniaturized thin-layer phases and utilization for scanning Direct Analysis in Real Time mass spectrometry.
    Häbe TT; Morlock GE
    J Chromatogr A; 2015 Sep; 1413():127-34. PubMed ID: 26303254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Printing of Surgical Clips: An In Vitro Pilot Study and Trial of Efficacy.
    Canvasser NE; De S; Koseoglu E; Lay AH; Sorokin I; Fernandez R; Cadeddu JA
    J Endourol; 2017 Sep; 31(9):930-933. PubMed ID: 28719986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital light processing 3D printing of microfluidic devices targeting high-pressure liquid-phase separations.
    Amini A; Themelis T; Ottevaere H; De Vos J; Eeltink S
    Mikrochim Acta; 2024 Mar; 191(3):171. PubMed ID: 38430344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of Electropun Polyacrylonitrile Nanofibrous Phases, Shown for the Separation of Water-Soluble Food Dyes via UTLC-Vis-ESI-MS.
    Niamlang P; Supaphol P; Morlock GE
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28796185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models.
    Favero CS; English JD; Cozad BE; Wirthlin JO; Short MM; Kasper FK
    Am J Orthod Dentofacial Orthop; 2017 Oct; 152(4):557-565. PubMed ID: 28962741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner.
    Gabriel EF; do Lago CL; Gobbi ÅL; Carrilho E; Coltro WK
    Electrophoresis; 2013 Aug; 34(15):2169-76. PubMed ID: 23712918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed gel electrophoresis device coupling with ICP-MS for online separation and detection of metalloproteins.
    Wang D; He B; Yan X; Nong Q; Wang C; Jiang J; Hu L; Jiang G
    Talanta; 2019 May; 197():145-150. PubMed ID: 30771916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography.
    Gupta V; Talebi M; Deverell J; Sandron S; Nesterenko PN; Heery B; Thompson F; Beirne S; Wallace GG; Paull B
    Anal Chim Acta; 2016 Mar; 910():84-94. PubMed ID: 26873472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct printing of silver nanoparticles by an agarose stamp on planar and patterned substrates.
    Kao YC; Hong FC
    Nanotechnology; 2011 May; 22(18):185303. PubMed ID: 21415468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale pillar arrays for separations.
    Kirchner TB; Strickhouser RB; Hatab NA; Charlton JJ; Kravchenko II; Lavrik NV; Sepaniak MJ
    Analyst; 2015 May; 140(10):3347-51. PubMed ID: 25857214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun Nafion-Polyacrylonitrile nanofibers as an ion exchange ultrathin layer chromatographic stationary phase.
    Wang Y; Olesik SV
    Anal Chim Acta; 2017 Jun; 970():82-90. PubMed ID: 28433062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.
    Alhijjaj M; Belton P; Qi S
    Eur J Pharm Biopharm; 2016 Nov; 108():111-125. PubMed ID: 27594210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel 3D-Printed and Miniaturized Periodic Counter Current Chromatography System for Continuous Purification of Monoclonal Antibodies.
    Kortmann C; Habib T; Heuer C; Solle D; Bahnemann J
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.