BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28194964)

  • 21. Planar chromatography and immunodetection of hydrocarbons on polyvinylidene difluoride membranes.
    Medina Ferrer F; Bailey JV
    J Sep Sci; 2021 Oct; 44(19):3654-3664. PubMed ID: 34324250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry.
    Pasilis SP; Van Berkel GJ
    J Chromatogr A; 2010 Jun; 1217(25):3955-65. PubMed ID: 19913798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and evaluation of a pentafluorobenzamide stationary phase for HPLC separations in the reversed phase and hydrophilic interaction modes.
    Ferreira CC; Gama MR; da Silva GS; Almeida WP; Collins CH; Jardim ICSF
    J Sep Sci; 2018 Oct; 41(20):3855-3862. PubMed ID: 30141264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochromatographic properties of synthetic poly(styrene-divinylbenzene) encapsulated packing material and sulphonic cation-exchange phase based on the former.
    Li B; Li Y; Han N; Xu B
    Beijing Da Xue Xue Bao Yi Xue Ban; 2003 Dec; 35(6):618-21. PubMed ID: 14710256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanical and photoelastic properties of 3D printable stress-visualized materials.
    Wang L; Ju Y; Xie H; Ma G; Mao L; He K
    Sci Rep; 2017 Sep; 7(1):10918. PubMed ID: 28883498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.
    Haque RI; Ogam E; Loussert C; Benaben P; Boddaert X
    Sensors (Basel); 2015 Oct; 15(10):26018-38. PubMed ID: 26473878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Demonstration of protein capture and separation using three-dimensional printed anion exchange monoliths fabricated in one-step.
    Simon U; Scorza LCT; Teworte S; McCormick AJ; Dimartino S
    J Sep Sci; 2021 Mar; 44(6):1078-1088. PubMed ID: 32898296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels.
    Lade RK; Hippchen EJ; Macosko CW; Francis LF
    Langmuir; 2017 Mar; 33(12):2949-2964. PubMed ID: 28274121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of Orientation-Controlled 3D Tissues Using a Layer-by-Layer Technique and 3D Printed a Thermoresponsive Gel Frame.
    Tsukamoto Y; Akagi T; Shima F; Akashi M
    Tissue Eng Part C Methods; 2017 Jun; 23(6):357-366. PubMed ID: 28471308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printed LED based on-capillary detector housing with integrated slit.
    Cecil F; Zhang M; Guijt RM; Henderson A; Nesterenko PN; Paull B; Breadmore MC; Macka M
    Anal Chim Acta; 2017 May; 965():131-136. PubMed ID: 28366210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of bone morphogenic protein-2 loaded on the 3D-printed MesoCS scaffolds.
    Huang KH; Lin YH; Shie MY; Lin CP
    J Formos Med Assoc; 2018 Oct; 117(10):879-887. PubMed ID: 30097222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D printing of self-assembling thermoresponsive nanoemulsions into hierarchical mesostructured hydrogels.
    Hsiao LC; Badruddoza AZ; Cheng LC; Doyle PS
    Soft Matter; 2017 Feb; 13(5):921-929. PubMed ID: 28094392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up.
    Kitson PJ; Marshall RJ; Long D; Forgan RS; Cronin L
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12723-8. PubMed ID: 25079230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies.
    Grunwald I; Groth E; Wirth I; Schumacher J; Maiwald M; Zoellmer V; Busse M
    Biofabrication; 2010 Mar; 2(1):014106. PubMed ID: 20811121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D printing of MRI compatible components: why every MRI research group should have a low-budget 3D printer.
    Herrmann KH; Gärtner C; Güllmar D; Krämer M; Reichenbach JR
    Med Eng Phys; 2014 Oct; 36(10):1373-80. PubMed ID: 25092622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary results for 2-D separation with high-performance thin-layer chromatography and pressurized planar electrochromatography.
    Chomicki A; Slazak P; Dzido TH
    Electrophoresis; 2009 Nov; 30(21):3718-25. PubMed ID: 19862749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D printing for electroanalysis: From multiuse electrochemical cells to sensors.
    Cardoso RM; Mendonça DMH; Silva WP; Silva MNT; Nossol E; da Silva RAB; Richter EM; Muñoz RAA
    Anal Chim Acta; 2018 Nov; 1033():49-57. PubMed ID: 30172331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarity-adjustable reversed phase ultrathin-layer chromatography.
    Hall JZ; Taschuk MT; Brett MJ
    J Chromatogr A; 2012 Nov; 1266():168-74. PubMed ID: 23116804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of the Improving Process for the 3D Printed Structure.
    Takagishi K; Umezu S
    Sci Rep; 2017 Jan; 7():39852. PubMed ID: 28054558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biotin-functionalized poly(ethylene terephthalate) capillary-channeled polymer fibers as HPLC stationary phase for affinity chromatography.
    Jiang L; Marcus RK
    Anal Bioanal Chem; 2015 Jan; 407(3):939-51. PubMed ID: 25410640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.