These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28194970)

  • 21. Electrophoresis system for high temperature mobility measurements of nanosize particles.
    Rodriguez-Santiago V; Fedkin MV; Lvov SN
    Rev Sci Instrum; 2008 Sep; 79(9):093302. PubMed ID: 19044402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrophoretic mobility of a highly charged colloidal particle in a solution of general electrolytes.
    Ohshima H
    J Colloid Interface Sci; 2004 Jul; 275(2):665-9. PubMed ID: 15178301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limiting electrophoretic mobility of a highly charged soft particle in an electrolyte solution: solidification effect.
    Ohshima H
    J Colloid Interface Sci; 2010 Sep; 349(2):641-4. PubMed ID: 20580374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new approach to the studies of submicron particle suspensions based on the effect of pressure in capillary zone electrophoresis.
    Vanifatova N; Rudnev A; Spivakov B
    Electrophoresis; 2013 Aug; 34(15):2145-51. PubMed ID: 23712419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles.
    Leroy P; Devau N; Revil A; Bizi M
    J Colloid Interface Sci; 2013 Nov; 410():81-93. PubMed ID: 24011560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size-based characterization of nanometric cationic maghemite particles using capillary zone electrophoresis.
    d'Orlyé F; Varenne A; Gareil P
    Electrophoresis; 2008 Sep; 29(18):3768-78. PubMed ID: 18850646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations.
    Holmberg JP; Ahlberg E; Bergenholtz J; Hassellöv M; Abbas Z
    J Colloid Interface Sci; 2013 Oct; 407():168-76. PubMed ID: 23859811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophoretic mobility of colloidal gold particles in electrolyte solutions.
    Agnihotri SM; Ohshima H; Terada H; Tomoda K; Makino K
    Langmuir; 2009 Apr; 25(8):4804-7. PubMed ID: 19366230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the ionic strength dependence of the electrophoretic mobility: From 2D to 3D slope-plots.
    Cottet H; Wu H; Allison SA
    Electrophoresis; 2017 Mar; 38(5):624-632. PubMed ID: 27859393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the migration behavior of nanoparticles based on polyethylene glycol and silica using micellar electrokinetic chromatography.
    Kato M; Sasaki M; Ueyama Y; Koga A; Sano A; Higashi T; Santa T
    J Sep Sci; 2015 Feb; 38(3):468-74. PubMed ID: 25413810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E; Lechuga L; Arroyo FJ; Delgado Á
    Adv Colloid Interface Sci; 2013 Dec; 201-202():57-67. PubMed ID: 24161224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orientation Distribution and Electrophoretic Motions of Rod-like Particles in a Capillary.
    Han SP; Yang SM
    J Colloid Interface Sci; 1996 Jan; 177(1):132-142. PubMed ID: 10479424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of the Surface Charge-Dependent Boundary Slip on the Electrophoresis of a Hydrophobic Polarizable Rigid Colloid.
    Majhi S; Bhattacharyya S; Gopmandal PP
    Langmuir; 2024 Feb; ():. PubMed ID: 38324781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions.
    López-García JJ; Grosse C; Horno J
    J Colloid Interface Sci; 2009 Jan; 329(2):384-9. PubMed ID: 18947835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation and comparison of zeta-potentials of silica-based anion-exchange type porous particles for capillary electrochromatography from electrophoretic and electroosmotic mobility.
    Sánchez Muñoz OL; Hernández EP; Lämmerhofer M; Lindner W; Kenndler E
    Electrophoresis; 2003 Jan; 24(3):390-8. PubMed ID: 12569531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics.
    Bouhaik IS; Leroy P; Ollivier P; Azaroual M; Mercury L
    J Colloid Interface Sci; 2013 Sep; 406():75-85. PubMed ID: 23806415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticle ζ -potentials.
    Doane TL; Chuang CH; Hill RJ; Burda C
    Acc Chem Res; 2012 Mar; 45(3):317-26. PubMed ID: 22074988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrophoretic mobility of concentrated spheres with a charge-regulated surface.
    Lee E; Yen FY; Hsu JP
    Electrophoresis; 2000 Feb; 21(3):475-80. PubMed ID: 10726746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis.
    d'Orlyé F; Varenne A; Georgelin T; Siaugue JM; Teste B; Descroix S; Gareil P
    Electrophoresis; 2009 Jul; 30(14):2572-82. PubMed ID: 19593752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophoretic mobility of a spherical colloidal particle in a salt-free medium.
    Ohshima H
    J Colloid Interface Sci; 2002 Apr; 248(2):499-503. PubMed ID: 16290556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.