BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28195130)

  • 1. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere.
    Liu SW; Wang HP; Xu Q; Ma TB; Yu G; Zhang C; Geng D; Yu Z; Zhang S; Wang W; Hu YZ; Wang H; Luo J
    Nat Commun; 2017 Feb; 8():14029. PubMed ID: 28195130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions.
    Song Y; Mandelli D; Hod O; Urbakh M; Ma M; Zheng Q
    Nat Mater; 2018 Oct; 17(10):894-899. PubMed ID: 30061730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.
    Li J; Gao T; Luo J
    Adv Sci (Weinh); 2018 Mar; 5(3):1700616. PubMed ID: 29593965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces.
    Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D
    Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips.
    Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T
    ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation Coupled MoirĂ© Mapping of Superlubricity in Graphene.
    Bai H; Zou G; Bao H; Li S; Ma F; Gao H
    ACS Nano; 2023 Jul; 17(13):12594-12602. PubMed ID: 37338168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol.
    Ge X; Li J; Luo R; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical modeling of structural superlubricity in rotated bilayer graphene, hexagonal boron nitride, molybdenum disulfide, and blue phosphorene.
    Kabengele T; Johnson ER
    Nanoscale; 2021 Sep; 13(34):14399-14407. PubMed ID: 34473160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of microscale superlubricity in graphite.
    Liu Z; Yang J; Grey F; Liu JZ; Liu Y; Wang Y; Yang Y; Cheng Y; Zheng Q
    Phys Rev Lett; 2012 May; 108(20):205503. PubMed ID: 23003154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Origin of Superlubricity between Graphene and a Highly Hydrophobic Surface in Water.
    Li J; Cao W; Li J; Ma M; Luo J
    J Phys Chem Lett; 2019 Jun; 10(11):2978-2984. PubMed ID: 31094522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superlubricity Enabled by Pressure-Induced Friction Collapse.
    Sun J; Zhang Y; Lu Z; Li Q; Xue Q; Du S; Pu J; Wang L
    J Phys Chem Lett; 2018 May; 9(10):2554-2559. PubMed ID: 29714483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superlubricity between a silicon tip and graphite enabled by the nanolithography-assisted nanoflakes tribo-transfer.
    Sha TD; Pang H; Fang L; Liu HX; Chen XC; Liu DM; Luo JB
    Nanotechnology; 2020 May; 31(20):205703. PubMed ID: 31995540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions.
    Han T; Zhang C; Luo J
    Langmuir; 2018 Sep; 34(38):11281-11291. PubMed ID: 30175911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The high-speed sliding friction of graphene and novel routes to persistent superlubricity.
    Liu Y; Grey F; Zheng Q
    Sci Rep; 2014 May; 4():4875. PubMed ID: 24786521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscale Superlubricity on Nanoscale Graphene MoirĂ© Structure-Assembled Surface via Counterface Hydrogen Modulation.
    Wang Y; Yang X; Liang H; Zhao J; Zhang J
    Adv Sci (Weinh); 2024 May; 11(19):e2309701. PubMed ID: 38483889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.