These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28195299)

  • 1. Nanoengineering of an Si/MnGe quantum dot superlattice for high Curie-temperature ferromagnetism.
    Nie T; Kou X; Tang J; Fan Y; Lee S; He Q; Chang LT; Murata K; Gen Y; Wang KL
    Nanoscale; 2017 Mar; 9(9):3086-3094. PubMed ID: 28195299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ge
    Wang L; Zhang Y; Liu T; Zhang Z; Hu H; Zou J; Jia Q; Jiang Z
    Nanoscale; 2020 Feb; 12(6):3997-4004. PubMed ID: 32016234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-temperature electric-field controlled ferromagnetism in Mn0.05Ge0.95 quantum dots.
    Xiu F; Wang Y; Kim J; Upadhyaya P; Zhou Y; Kou X; Han W; Kawakami RK; Zou J; Wang KL
    ACS Nano; 2010 Aug; 4(8):4948-54. PubMed ID: 20666361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Curie Temperature Achieved in the Ferromagnetic Mn
    Duan X; Ye S; Yang J; Li C; Lu C; He X; Zhang L; Wang R; Qiu F; Yang J; Cui H; Wang C
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric-field controlled ferromagnetism in MnGe magnetic quantum dots.
    Xiu F; Wang Y; Zou J; Wang KL
    Nano Rev; 2011; 2():. PubMed ID: 22110869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots.
    Xiu F; Wang Y; Kim J; Hong A; Tang J; Jacob AP; Zou J; Wang KL
    Nat Mater; 2010 Apr; 9(4):337-44. PubMed ID: 20208524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-T
    Nie T; Tang J; Kou X; Gen Y; Lee S; Zhu X; He Q; Chang LT; Murata K; Fan Y; Wang KL
    Nat Commun; 2016 Oct; 7():12866. PubMed ID: 27762320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and ferromagnetism of Si-SiGe/MnGe core-shell nanopillars.
    Wang L; Liu T; Wang S; Zhong Z; Jia Q; Jiang Z
    Nanotechnology; 2016 Oct; 27(40):405705. PubMed ID: 27581545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Curie-temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns.
    Jamet M; Barski A; Devillers T; Poydenot V; Dujardin R; Bayle-Guillemaud P; Rothman J; Bellet-Amalric E; Marty A; Cibert J; Mattana R; Tatarenko S
    Nat Mater; 2006 Aug; 5(8):653-9. PubMed ID: 16845420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MnGe magnetic nanocolumns and nanowells.
    Xiu F; Wang Y; Wong K; Zhou Y; Kou X; Zou J; Wang KL
    Nanotechnology; 2010 Jun; 21(25):255602. PubMed ID: 20508314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor.
    Toyosaki H; Fukumura T; Yamada Y; Nakajima K; Chikyow T; Hasegawa T; Koinuma H; Kawasaki M
    Nat Mater; 2004 Apr; 3(4):221-4. PubMed ID: 15034563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials.
    Wu SC; Shan G; Yan B
    Phys Rev Lett; 2014 Dec; 113(25):256401. PubMed ID: 25554896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of high-T(c) ferromagnetism and n-type electrical conductivity in FeBi2Se4.
    Ranmohotti KG; Djieutedjeu H; Lopez J; Page A; Haldolaarachchige N; Chi H; Sahoo P; Uher C; Young D; Poudeu PF
    J Am Chem Soc; 2015 Jan; 137(2):691-8. PubMed ID: 25539454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room Temperature Ferromagnetism of Monolayer Chromium Telluride with Perpendicular Magnetic Anisotropy.
    Chua R; Zhou J; Yu X; Yu W; Gou J; Zhu R; Zhang L; Liu M; Breese MBH; Chen W; Loh KP; Feng YP; Yang M; Huang YL; Wee ATS
    Adv Mater; 2021 Oct; 33(42):e2103360. PubMed ID: 34477241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferromagnetic germanide in Ge nanowire transistors for spintronics application.
    Tang J; Wang CY; Hung MH; Jiang X; Chang LT; He L; Liu PH; Yang HJ; Tuan HY; Chen LJ; Wang KL
    ACS Nano; 2012 Jun; 6(6):5710-7. PubMed ID: 22658951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconducting Ferromagnetic Nanodiamond.
    Zhang G; Samuely T; Xu Z; Jochum JK; Volodin A; Zhou S; May PW; Onufriienko O; Kačmarčík J; Steele JA; Li J; Vanacken J; Vacík J; Szabó P; Yuan H; Roeffaers MBJ; Cerbu D; Samuely P; Hofkens J; Moshchalkov VV
    ACS Nano; 2017 Jun; 11(6):5358-5366. PubMed ID: 28511000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-controlled ferromagnetic order in MnGe quantum dots.
    Xiu F; Ovchinnikov IV; Upadhyaya P; Wong K; Kou X; Zhou Y; Wang KL
    Nanotechnology; 2010 Sep; 21(37):375606. PubMed ID: 20724774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Transparent Contacts to the 1D Hole Gas in Ultrascaled Ge/Si Core/Shell Nanowires.
    Sistani M; Delaforce J; Kramer RBG; Roch N; Luong MA; den Hertog MI; Robin E; Smoliner J; Yao J; Lieber CM; Naud C; Lugstein A; Buisson O
    ACS Nano; 2019 Dec; 13(12):14145-14151. PubMed ID: 31816231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximity-Induced Interfacial Room-Temperature Ferromagnetism in Semiconducting Fe
    Zhao Q; Zhu Y; Zhang H; Jiang B; Wang Y; Xie T; Lou K; Xia C; Yang H; Bi C
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46520-46526. PubMed ID: 37738105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferromagnetism above Room Temperature in a Ni-Doped Organic-Based Magnetic Semiconductor.
    Chou WY; Peng SK; Chang FH; Cheng HL; Ruan JJ; Ho TY
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34962-34972. PubMed ID: 34269055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.