These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28195464)

  • 1. Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins.
    Poma AB; Cieplak M; Theodorakis PE
    J Chem Theory Comput; 2017 Mar; 13(3):1366-1374. PubMed ID: 28195464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bartender: Martini 3 Bonded Terms via Quantum Mechanics-Based Molecular Dynamics.
    Pereira GP; Alessandri R; Domínguez M; Araya-Osorio R; Grünewald L; Borges-Araújo L; Wu S; Marrink SJ; Souza PCT; Mera-Adasme R
    J Chem Theory Comput; 2024 Jul; 20(13):5763-5773. PubMed ID: 38924075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Martini 3 protein model: A review of its path and potential.
    Borges-Araújo L; Pereira GP; Valério M; Souza PCT
    Biochim Biophys Acta Proteins Proteom; 2024 Jul; 1872(4):141014. PubMed ID: 38670324
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Yang S; Song C
    J Chem Theory Comput; 2024 Mar; 20(6):2618-2629. PubMed ID: 38447049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Free Energies of Specific Protein Conformations Using the Martini Force Field.
    Plazinski W; Lutsyk V; Plazinska A
    J Chem Theory Comput; 2024 Mar; 20(5):2273-2283. PubMed ID: 38427574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in transferable coarse-grained modeling of proteins.
    Kar P; Feig M
    Adv Protein Chem Struct Biol; 2014; 96():143-80. PubMed ID: 25443957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Top-Down Machine Learning of Coarse-Grained Protein Force Fields.
    Navarro C; Majewski M; De Fabritiis G
    J Chem Theory Comput; 2023 Nov; 19(21):7518-7526. PubMed ID: 37874270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of Functional Motions of Super Large Biomolecules with a Mixed-Resolution Model.
    Li S; Wu B; Luo YL; Han W
    J Chem Theory Comput; 2024 Mar; 20(5):2228-2245. PubMed ID: 38374639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pragmatic Coarse-Graining of Proteins: Models and Applications.
    Borges-Araújo L; Patmanidis I; Singh AP; Santos LHS; Sieradzan AK; Vanni S; Czaplewski C; Pantano S; Shinoda W; Monticelli L; Liwo A; Marrink SJ; Souza PCT
    J Chem Theory Comput; 2023 Oct; 19(20):7112-7135. PubMed ID: 37788237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRAH Late Harvest: Coarse-Grained Models for Protein Glycosylation.
    Garay PG; Machado MR; Verli H; Pantano S
    J Chem Theory Comput; 2024 Jan; 20(2):963-976. PubMed ID: 38175797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Martini on the Rocks: Can a Coarse-Grained Force Field Model Crystals?
    Hosseini AN; van der Spoel D
    J Phys Chem Lett; 2024 Feb; 15(4):1079-1088. PubMed ID: 38261634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane dimers of type 1 receptors sample alternate configurations: MD simulations using coarse grain Martini 3 versus AlphaFold2 Multimer.
    Sahoo AR; Souza PCT; Meng Z; Buck M
    Structure; 2023 Jun; 31(6):735-745.e2. PubMed ID: 37075749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Parameter Estimation of Generalizable Coarse-Grained Protein Force Fields Using Contrastive Divergence: A Maximum Likelihood Approach.
    Várnai C; Burkoff NS; Wild DL
    J Chem Theory Comput; 2013 Dec; 9(12):5718-5733. PubMed ID: 24683370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gō model revisited.
    Takada S
    Biophys Physicobiol; 2019; 16():248-255. PubMed ID: 31984178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations.
    Casasnovas R; Limongelli V; Tiwary P; Carloni P; Parrinello M
    J Am Chem Soc; 2017 Apr; 139(13):4780-4788. PubMed ID: 28290199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-Grained Prediction of Peptide Binding to G-Protein Coupled Receptors.
    Delort B; Renault P; Charlier L; Raussin F; Martinez J; Floquet N
    J Chem Inf Model; 2017 Mar; 57(3):562-571. PubMed ID: 28230370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Explicit and Implicit Fullerene Models into UNRES Force Field for Protein Interaction Studies.
    Rogoża NH; Krupa MA; Krupa P; Sieradzan AK
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Structure Independent Molecular Fragment Interfuse Model for Mesoscale Dissipative Particle Dynamics Simulation of Peptides.
    Dash RA; Jabbari E
    ACS Omega; 2024 Apr; 9(16):18001-18022. PubMed ID: 38680324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Rearrangements of Pigeon Cryptochrome 4 Undergoing a Complete Redox Cycle.
    Schuhmann F; Ramsay JL; Kattnig DR; Solov'yov IA
    J Phys Chem B; 2024 Apr; 128(16):3844-3855. PubMed ID: 38568745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments.
    Grassmann G; Miotto M; Desantis F; Di Rienzo L; Tartaglia GG; Pastore A; Ruocco G; Monti M; Milanetti E
    Chem Rev; 2024 Apr; 124(7):3932-3977. PubMed ID: 38535831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.