These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28195473)

  • 1. A Local Order Parameter-Based Method for Simulation of Free Energy Barriers in Crystal Nucleation.
    Eslami H; Khanjari N; Müller-Plathe F
    J Chem Theory Comput; 2017 Mar; 13(3):1307-1316. PubMed ID: 28195473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.
    He X; Shen Y; Hung FR; Santiso EE
    J Chem Phys; 2016 Dec; 145(21):211919. PubMed ID: 28799378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous Crystallization of a Supercooled Lennard-Jones Liquid: Molecular Dynamics Simulation.
    Baidakov VG; Protsenko KR
    J Phys Chem B; 2019 Sep; 123(38):8103-8112. PubMed ID: 31483996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical prediction of crystallization kinetics of a supercooled Lennard-Jones fluid.
    Gunawardana KGSH; Song X
    J Chem Phys; 2018 May; 148(20):204506. PubMed ID: 29865809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical calculation of free-energy barriers for entangled polymer nucleation.
    Tang X; Tian F; Xu T; Li L; Reinhardt A
    J Chem Phys; 2020 Jun; 152(22):224904. PubMed ID: 32534553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal nucleation and the solid-liquid interfacial free energy.
    Baidakov VG; Tipeev AO
    J Chem Phys; 2012 Feb; 136(7):074510. PubMed ID: 22360251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of solid-liquid interfacial free energy: a classical nucleation theory based approach.
    Bai XM; Li M
    J Chem Phys; 2006 Mar; 124(12):124707. PubMed ID: 16599718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics and kinetics of bubble nucleation: simulation methodology.
    Meadley SL; Escobedo FA
    J Chem Phys; 2012 Aug; 137(7):074109. PubMed ID: 22920105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hit and miss of classical nucleation theory as revealed by a molecular simulation study of crystal nucleation in supercooled sulfur hexafluoride.
    Leyssale JM; Delhommelle J; Millot C
    J Chem Phys; 2007 Jul; 127(4):044504. PubMed ID: 17672704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembly of Model Triblock Janus Colloidal Particles in Two Dimensions.
    Bahri K; Eslami H; Müller-Plathe F
    J Chem Theory Comput; 2022 Mar; 18(3):1870-1882. PubMed ID: 35157474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability limits for the supercooled liquid and superheated crystal of Lennard-Jones particles.
    Loscar ES; Martin DA; Grigera TS
    J Chem Phys; 2017 Jul; 147(3):034504. PubMed ID: 28734310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular simulation of bundle-like crystal nucleation from n-eicosane melts.
    Yi P; Rutledge GC
    J Chem Phys; 2011 Jul; 135(2):024903. PubMed ID: 21766967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase nucleation free-energy barriers in truncated cubes: interplay of localized orientational order and facet alignment.
    Sharma AK; Thapar V; Escobedo FA
    Soft Matter; 2018 Mar; 14(11):1996-2005. PubMed ID: 29388998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial free energy of a liquid-solid interface: Its change with curvature.
    Montero de Hijes P; Espinosa JR; Sanz E; Vega C
    J Chem Phys; 2019 Oct; 151(14):144501. PubMed ID: 31615240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory for crystal-liquid interfaces of Lennard-Jones fluid.
    Wang X; Mi J; Zhong C
    J Chem Phys; 2013 Apr; 138(16):164704. PubMed ID: 23635162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The barrier to ice nucleation in monatomic water.
    Prestipino S
    J Chem Phys; 2018 Mar; 148(12):124505. PubMed ID: 29604880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal nucleation of colloidal hard dumbbells.
    Ni R; Dijkstra M
    J Chem Phys; 2011 Jan; 134(3):034501. PubMed ID: 21261362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal nucleation rate isotherms in Lennard-Jones liquids.
    Baidakov VG; Tipeev AO; Bobrov KS; Ionov GV
    J Chem Phys; 2010 Jun; 132(23):234505. PubMed ID: 20572719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.