BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28195477)

  • 1. Enzymatic N- and C-Protection in Cyanobactin RiPP Natural Products.
    Sardar D; Hao Y; Lin Z; Morita M; Nair SK; Schmidt EW
    J Am Chem Soc; 2017 Mar; 139(8):2884-2887. PubMed ID: 28195477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis.
    Gu W; Dong SH; Sarkar S; Nair SK; Schmidt EW
    Methods Enzymol; 2018; 604():113-163. PubMed ID: 29779651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AgeMTPT, a Catalyst for Peptide N-Terminal Modification.
    Cong Y; Scesa PD; Schmidt EW
    ACS Synth Biol; 2022 Nov; 11(11):3699-3705. PubMed ID: 36279362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing nature's synthetic potential through the study of ribosomal natural product biosynthesis.
    Dunbar KL; Mitchell DA
    ACS Chem Biol; 2013 Mar; 8(3):473-87. PubMed ID: 23286465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition sequences and substrate evolution in cyanobactin biosynthesis.
    Sardar D; Pierce E; McIntosh JA; Schmidt EW
    ACS Synth Biol; 2015 Feb; 4(2):167-76. PubMed ID: 24625112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products.
    van der Velden NS; Kälin N; Helf MJ; Piel J; Freeman MF; Künzler M
    Nat Chem Biol; 2017 Aug; 13(8):833-835. PubMed ID: 28581484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying Promiscuous RiPP Enzymes to Peptide Backbone
    Sarkar S; Gu W; Schmidt EW
    ACS Chem Biol; 2022 Aug; 17(8):2165-2178. PubMed ID: 35819062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis.
    Miller FS; Crone KK; Jensen MR; Shaw S; Harcombe WR; Elias MH; Freeman MF
    Nat Commun; 2021 Sep; 12(1):5355. PubMed ID: 34504067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase.
    Nguyen NA; Cong Y; Hurrell RC; Arias N; Garg N; Puri AW; Schmidt EW; Agarwal V
    ACS Chem Biol; 2022 Jun; 17(6):1577-1585. PubMed ID: 35666841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides.
    Sardar D; Lin Z; Schmidt EW
    Chem Biol; 2015 Jul; 22(7):907-16. PubMed ID: 26165156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Self-Sacrificing N-Methyltransferase Is the Precursor of the Fungal Natural Product Omphalotin.
    Ramm S; Krawczyk B; Mühlenweg A; Poch A; Mösker E; Süssmuth RD
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9994-9997. PubMed ID: 28715095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
    Sardar D; Tianero MD; Schmidt EW
    Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates.
    Lee J; McIntosh J; Hathaway BJ; Schmidt EW
    J Am Chem Soc; 2009 Feb; 131(6):2122-4. PubMed ID: 19166292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking chemistry and genetics in the growing cyanobactin natural products family.
    Donia MS; Schmidt EW
    Chem Biol; 2011 Apr; 18(4):508-19. PubMed ID: 21513887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis for a Dual Function ATP Grasp Ligase That Installs Single and Bicyclic ω-Ester Macrocycles in a New Multicore RiPP Natural Product.
    Zhao G; Kosek D; Liu HB; Ohlemacher SI; Blackburne B; Nikolskaya A; Makarova KS; Sun J; Barry Iii CE; Koonin EV; Dyda F; Bewley CA
    J Am Chem Soc; 2021 Jun; 143(21):8056-8068. PubMed ID: 34028251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of cyanobactin biosynthesis.
    Czekster CM; Ge Y; Naismith JH
    Curr Opin Chem Biol; 2016 Dec; 35():80-88. PubMed ID: 27639115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-Free Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme-Substrate Tolerance.
    Si Y; Kretsch AM; Daigh LM; Burk MJ; Mitchell DA
    J Am Chem Soc; 2021 Apr; 143(15):5917-5927. PubMed ID: 33823110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.