These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28195477)

  • 1. Enzymatic N- and C-Protection in Cyanobactin RiPP Natural Products.
    Sardar D; Hao Y; Lin Z; Morita M; Nair SK; Schmidt EW
    J Am Chem Soc; 2017 Mar; 139(8):2884-2887. PubMed ID: 28195477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis.
    Gu W; Dong SH; Sarkar S; Nair SK; Schmidt EW
    Methods Enzymol; 2018; 604():113-163. PubMed ID: 29779651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AgeMTPT, a Catalyst for Peptide N-Terminal Modification.
    Cong Y; Scesa PD; Schmidt EW
    ACS Synth Biol; 2022 Nov; 11(11):3699-3705. PubMed ID: 36279362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing nature's synthetic potential through the study of ribosomal natural product biosynthesis.
    Dunbar KL; Mitchell DA
    ACS Chem Biol; 2013 Mar; 8(3):473-87. PubMed ID: 23286465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition sequences and substrate evolution in cyanobactin biosynthesis.
    Sardar D; Pierce E; McIntosh JA; Schmidt EW
    ACS Synth Biol; 2015 Feb; 4(2):167-76. PubMed ID: 24625112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products.
    van der Velden NS; Kälin N; Helf MJ; Piel J; Freeman MF; Künzler M
    Nat Chem Biol; 2017 Aug; 13(8):833-835. PubMed ID: 28581484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying Promiscuous RiPP Enzymes to Peptide Backbone
    Sarkar S; Gu W; Schmidt EW
    ACS Chem Biol; 2022 Aug; 17(8):2165-2178. PubMed ID: 35819062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis.
    Miller FS; Crone KK; Jensen MR; Shaw S; Harcombe WR; Elias MH; Freeman MF
    Nat Commun; 2021 Sep; 12(1):5355. PubMed ID: 34504067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase.
    Nguyen NA; Cong Y; Hurrell RC; Arias N; Garg N; Puri AW; Schmidt EW; Agarwal V
    ACS Chem Biol; 2022 Jun; 17(6):1577-1585. PubMed ID: 35666841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides.
    Sardar D; Lin Z; Schmidt EW
    Chem Biol; 2015 Jul; 22(7):907-16. PubMed ID: 26165156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Self-Sacrificing N-Methyltransferase Is the Precursor of the Fungal Natural Product Omphalotin.
    Ramm S; Krawczyk B; Mühlenweg A; Poch A; Mösker E; Süssmuth RD
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9994-9997. PubMed ID: 28715095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
    Sardar D; Tianero MD; Schmidt EW
    Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates.
    Lee J; McIntosh J; Hathaway BJ; Schmidt EW
    J Am Chem Soc; 2009 Feb; 131(6):2122-4. PubMed ID: 19166292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking chemistry and genetics in the growing cyanobactin natural products family.
    Donia MS; Schmidt EW
    Chem Biol; 2011 Apr; 18(4):508-19. PubMed ID: 21513887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis for a Dual Function ATP Grasp Ligase That Installs Single and Bicyclic ω-Ester Macrocycles in a New Multicore RiPP Natural Product.
    Zhao G; Kosek D; Liu HB; Ohlemacher SI; Blackburne B; Nikolskaya A; Makarova KS; Sun J; Barry Iii CE; Koonin EV; Dyda F; Bewley CA
    J Am Chem Soc; 2021 Jun; 143(21):8056-8068. PubMed ID: 34028251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of cyanobactin biosynthesis.
    Czekster CM; Ge Y; Naismith JH
    Curr Opin Chem Biol; 2016 Dec; 35():80-88. PubMed ID: 27639115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-Free Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme-Substrate Tolerance.
    Si Y; Kretsch AM; Daigh LM; Burk MJ; Mitchell DA
    J Am Chem Soc; 2021 Apr; 143(15):5917-5927. PubMed ID: 33823110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.