BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28195494)

  • 1. Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures.
    Barrios-Vargas JE; Mortazavi B; Cummings AW; Martinez-Gordillo R; Pruneda M; Colombo L; Rabczuk T; Roche S
    Nano Lett; 2017 Mar; 17(3):1660-1664. PubMed ID: 28195494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride.
    Qi ZJ; Hong SJ; Rodríguez-Manzo JA; Kybert NJ; Gudibande R; Drndić M; Park YW; Johnson AT
    Small; 2015 Mar; 11(12):1402-8. PubMed ID: 25367876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Study of the Transport Properties of Graphene-Hexagonal Boron Nitride Superlattice.
    Wang XM; Lu SS
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3025-8. PubMed ID: 26353530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable High-Mobility Graphene/hBN Heterostructures.
    Martini L; Mišeikis V; Esteban D; Azpeitia J; Pezzini S; Paletti P; Ochapski MW; Convertino D; Hernandez MG; Jimenez I; Coletti C
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37794-37801. PubMed ID: 37523768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlayer coupling enhancement in graphene/hexagonal boron nitride heterostructures by intercalated defects or vacancies.
    Park S; Park C; Kim G
    J Chem Phys; 2014 Apr; 140(13):134706. PubMed ID: 24712807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Heterostructured Reduced Graphene Oxide-Hexagonal Boron Nitride-Stacking Material for Silicone Thermal Grease with Enhanced Thermally Conductive Properties.
    Liang W; Ge X; Ge J; Li T; Zhao T; Chen X; Zhang M; Ji J; Pang X; Liu R
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation.
    Lee JS; Choi SH; Yun SJ; Kim YI; Boandoh S; Park JH; Shin BG; Ko H; Lee SH; Kim YM; Lee YH; Kim KK; Kim SM
    Science; 2018 Nov; 362(6416):817-821. PubMed ID: 30442807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics.
    Kim KK; Lee HS; Lee YH
    Chem Soc Rev; 2018 Aug; 47(16):6342-6369. PubMed ID: 30043784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optoelectronic Properties of Monolayer Hexagonal Boron Nitride on Different Substrates Measured by Terahertz Time-Domain Spectroscopy.
    Bilal M; Xu W; Wang C; Wen H; Zhao X; Song D; Ding L
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct growth of hBN/Graphene heterostructure via surface deposition and segregation for independent thickness regulation.
    Liu W; Li X; Wang Y; Xu R; Ying H; Wang L; Cheng Z; Hao Y; Chen S
    Nanotechnology; 2022 Aug; 33(47):. PubMed ID: 35970145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-Engineering of Twist-Angle in Graphene/hBN Superlattice Devices.
    De Sanctis A; Mehew JD; Alkhalifa S; Withers F; Craciun MF; Russo S
    Nano Lett; 2018 Dec; 18(12):7919-7926. PubMed ID: 30474986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    Felix IM; Pereira LFC
    Sci Rep; 2018 Feb; 8(1):2737. PubMed ID: 29426893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically detaching hBN crystals grown at atmospheric pressure and high temperature for high-performance graphene devices.
    Ouaj T; Kramme L; Metzelaars M; Li J; Watanabe K; Taniguchi T; Edgar JH; Beschoten B; Kögerler P; Stampfer C
    Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37607531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization.
    Wang P; Lee W; Corbett JP; Koll WH; Vu NM; Laleyan DA; Wen Q; Wu Y; Pandey A; Gim J; Wang D; Qiu DY; Hovden R; Kira M; Heron JT; Gupta JA; Kioupakis E; Mi Z
    Adv Mater; 2022 May; 34(21):e2201387. PubMed ID: 35355349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN.
    Wang JI; Yang Y; Chen YA; Watanabe K; Taniguchi T; Churchill HO; Jarillo-Herrero P
    Nano Lett; 2015 Mar; 15(3):1898-903. PubMed ID: 25654184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition.
    De Fazio D; Purdie DG; Ott AK; Braeuninger-Weimer P; Khodkov T; Goossens S; Taniguchi T; Watanabe K; Livreri P; Koppens FHL; Hofmann S; Goykhman I; Ferrari AC; Lombardo A
    ACS Nano; 2019 Aug; 13(8):8926-8935. PubMed ID: 31322332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric effects in graphene nanostructures.
    Dollfus P; Hung Nguyen V; Saint-Martin J
    J Phys Condens Matter; 2015 Apr; 27(13):133204. PubMed ID: 25779989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes.
    Lee W; Kihm KD; Kim HG; Shin S; Lee C; Park JS; Cheon S; Kwon OM; Lim G; Lee W
    Nano Lett; 2017 Apr; 17(4):2361-2366. PubMed ID: 28252971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative differential resistance in boron nitride graphene heterostructures: physical mechanisms and size scaling analysis.
    Zhao Y; Wan Z; Xu X; Patil SR; Hetmaniuk U; Anantram MP
    Sci Rep; 2015 May; 5():10712. PubMed ID: 25991076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.