These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28195693)

  • 1. Assembly Domain-Based Optogenetic System for the Efficient Control of Cellular Signaling.
    Furuya A; Kawano F; Nakajima T; Ueda Y; Sato M
    ACS Synth Biol; 2017 Jun; 6(6):1086-1095. PubMed ID: 28195693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell membrane dynamics induction using optogenetic tools.
    Ueda Y; Sato M
    Biochem Biophys Res Commun; 2018 Nov; 506(2):387-393. PubMed ID: 29155180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An AND-Gated Drug and Photoactivatable Cre-
    Allen ME; Zhou W; Thangaraj J; Kyriakakis P; Wu Y; Huang Z; Ho P; Pan Y; Limsakul P; Xu X; Wang Y
    ACS Synth Biol; 2019 Oct; 8(10):2359-2371. PubMed ID: 31592660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins.
    Kawano F; Suzuki H; Furuya A; Sato M
    Nat Commun; 2015 Feb; 6():6256. PubMed ID: 25708714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells.
    Benedetti L; Marvin JS; Falahati H; Guillén-Samander A; Looger LL; De Camilli P
    Elife; 2020 Nov; 9():. PubMed ID: 33174843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic control of protein kinase activity in mammalian cells.
    Wend S; Wagner HJ; Müller K; Zurbriggen MD; Weber W; Radziwill G
    ACS Synth Biol; 2014 May; 3(5):280-5. PubMed ID: 24090449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically engineered photoinducible homodimerization system with improved dimer-forming efficiency.
    Nihongaki Y; Suzuki H; Kawano F; Sato M
    ACS Chem Biol; 2014 Mar; 9(3):617-21. PubMed ID: 24428544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells.
    Che DL; Duan L; Zhang K; Cui B
    ACS Synth Biol; 2015 Oct; 4(10):1124-35. PubMed ID: 25985220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane Dynamics Induced by a Phosphatidylinositol 3,4,5-Trisphosphate Optogenetic Tool.
    Ueda Y; Ii T; Aono Y; Sugimoto N; Shinji S; Yoshida H; Sato M
    Anal Sci; 2019 Jan; 35(1):57-63. PubMed ID: 30393242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blue Light Switchable Bacterial Adhesion as a Key Step toward the Design of Biofilms.
    Chen F; Wegner SV
    ACS Synth Biol; 2017 Dec; 6(12):2170-2174. PubMed ID: 28803472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parts-based assembly of synthetic transmembrane proteins in mammalian cells.
    Nagaraj S; Wong S; Truong K
    ACS Synth Biol; 2012 Apr; 1(4):111-7. PubMed ID: 23651113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rewiring Multidomain Protein Switches: Transforming a Fluorescent Zn(2+) Sensor into a Light-Responsive Zn(2+) Binding Protein.
    Aper SJ; Merkx M
    ACS Synth Biol; 2016 Jul; 5(7):698-709. PubMed ID: 27031076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repurposing Protein Degradation for Optogenetic Modulation of Protein Activities.
    Mondal P; Krishnamurthy VV; Sharum SR; Haack N; Zhou H; Cheng J; Yang J; Zhang K
    ACS Synth Biol; 2019 Nov; 8(11):2585-2592. PubMed ID: 31600062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonal optogenetic triple-gene control in Mammalian cells.
    Müller K; Engesser R; Timmer J; Zurbriggen MD; Weber W
    ACS Synth Biol; 2014 Nov; 3(11):796-801. PubMed ID: 25343333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.
    Kawano F; Okazaki R; Yazawa M; Sato M
    Nat Chem Biol; 2016 Dec; 12(12):1059-1064. PubMed ID: 27723747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Control of Nucleocytoplasmic Protein Transport.
    Weis D; Di Ventura B
    Methods Mol Biol; 2020; 2173():127-136. PubMed ID: 32651914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guidelines for Photoreceptor Engineering.
    Ziegler T; Schumacher CH; Möglich A
    Methods Mol Biol; 2016; 1408():389-403. PubMed ID: 26965138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of Signal Transduction by Using Non-Channelrhodopsin-Type Optogenetic Tools.
    Ueda Y; Sato M
    Chembiochem; 2018 Jun; 19(12):1217-1231. PubMed ID: 29577530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Protein Activity and Degradation Using Blue Light.
    Lutz AP; Renicke C; Taxis C
    Methods Mol Biol; 2016; 1408():67-78. PubMed ID: 26965116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic biological approaches to optogenetically control cell signaling.
    Kolar K; Weber W
    Curr Opin Biotechnol; 2017 Oct; 47():112-119. PubMed ID: 28715701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.