These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28195702)

  • 1. How Do Pseudocapacitors Store Energy? Theoretical Analysis and Experimental Illustration.
    Costentin C; Porter TR; Savéant JM
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8649-8658. PubMed ID: 28195702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy storage: pseudocapacitance in prospect.
    Costentin C; Savéant JM
    Chem Sci; 2019 Jun; 10(22):5656-5666. PubMed ID: 31293750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the pseudocapacitance of RuO2 from joint density functional theory.
    Zhan C; Jiang DE
    J Phys Condens Matter; 2016 Nov; 28(46):464004. PubMed ID: 27624301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substantial Na-Ion Storage at High Current Rates: Redox-Pseudocapacitance through Sodium Oxide Formation.
    Portenkirchner E
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors.
    Brezesinski T; Wang J; Tolbert SH; Dunn B
    Nat Mater; 2010 Feb; 9(2):146-51. PubMed ID: 20062048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature of Electronic Conduction in "Pseudocapacitive" Films: Transition from the Insulator State to Band-Conduction.
    Costentin C; Porter TR; Savéant JM
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28769-28773. PubMed ID: 31311266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards fast-charging technologies in Li
    Huang H; Niederberger M
    Nanoscale; 2019 Nov; 11(41):19225-19240. PubMed ID: 31532434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials.
    Fleischmann S; Mitchell JB; Wang R; Zhan C; Jiang DE; Presser V; Augustyn V
    Chem Rev; 2020 Jul; 120(14):6738-6782. PubMed ID: 32597172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the pulsed nature of staircase cyclic voltammetry to determine interfacial electron-transfer rates of adsorbed species.
    Heering HA; Mondal MS; Armstrong FA
    Anal Chem; 1999 Jan; 71(1):174-82. PubMed ID: 21662940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct separation of faradaic and double layer charging current in potential step voltammetry.
    Tu J; Cai W; Shao X
    Talanta; 2013 Nov; 116():575-80. PubMed ID: 24148448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO
    Kim HS; Cook JB; Lin H; Ko JS; Tolbert SH; Ozolins V; Dunn B
    Nat Mater; 2017 Apr; 16(4):454-460. PubMed ID: 27918566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the MXene Pseudocapacitance.
    Zhan C; Naguib M; Lukatskaya M; Kent PRC; Gogotsi Y; Jiang DE
    J Phys Chem Lett; 2018 Mar; 9(6):1223-1228. PubMed ID: 29461062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and stable redox reactions of MnO₂/CNT hybrid electrodes for dynamically stretchable pseudocapacitors.
    Gu T; Wei B
    Nanoscale; 2015 Jul; 7(27):11626-32. PubMed ID: 26090617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible electrochemical actuation of metallic nanohoneycombs induced by pseudocapacitive redox processes.
    Cheng C; Ngan AH
    ACS Nano; 2015 Apr; 9(4):3984-95. PubMed ID: 25758028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal Nanowire-Based Hybrid Electrodes Exhibiting High Charge/Discharge Rates and Long-Lived Electrocatalysis.
    Pandey RK; Kawabata Y; Teraji S; Norisuye T; Tran-Cong-Miyata Q; Soh S; Nakanishi H
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36350-36357. PubMed ID: 28944655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes.
    Sellam ; Hashmi SA
    ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-electrodes for selective electrochemical separations.
    Su X; Hatton TA
    Adv Colloid Interface Sci; 2017 Jun; 244():6-20. PubMed ID: 27712721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the cyclic voltammetric response of an outer-sphere redox species with inclusion of electrical double layer structure and ohmic potential drop.
    Levey KJ; Edwards MA; White HS; Macpherson JV
    Phys Chem Chem Phys; 2023 Mar; 25(11):7832-7846. PubMed ID: 36857676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.