These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28195711)

  • 1. Impact of Mn(II)-Manganese Oxide Reactions on Ni and Zn Speciation.
    Hinkle MA; Dye KG; Catalano JG
    Environ Sci Technol; 2017 Mar; 51(6):3187-3196. PubMed ID: 28195711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Adsorption Controls Stability of Layered Manganese Oxides.
    Yang P; Post JE; Wang Q; Xu W; Geiss R; McCurdy PR; Zhu M
    Environ Sci Technol; 2019 Jul; 53(13):7453-7462. PubMed ID: 31150220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of aqueous Mn(II) on the sorption of Zn(II) by hexagonal birnessite.
    Lefkowitz JP; Elzinga EJ
    Environ Sci Technol; 2015 Apr; 49(8):4886-93. PubMed ID: 25790186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.
    Zhao H; Zhu M; Li W; Elzinga EJ; Villalobos M; Liu F; Zhang J; Feng X; Sparks DL
    Environ Sci Technol; 2016 Feb; 50(4):1750-8. PubMed ID: 26745815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination geometry of Zn
    Yin H; Wang X; Qin Z; Ginder-Vogel M; Zhang S; Jiang S; Liu F; Li S; Zhang J; Wang Y
    J Environ Sci (China); 2018 Mar; 65():282-292. PubMed ID: 29548399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-Resolved Investigation of Cobalt Oxidation by Mn(III)-Rich δ-MnO2 Using Quick X-ray Absorption Spectroscopy.
    Simanova AA; Peña J
    Environ Sci Technol; 2015 Sep; 49(18):10867-76. PubMed ID: 26236964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EXAFS studies on adsorption-desorption reversibility at manganese oxide-water interfaces. II. Reversible adsorption of zinc on delta-MnO2.
    Li X; Pan G; Qin Y; Hu T; Wu Z; Xie Y
    J Colloid Interface Sci; 2004 Mar; 271(1):35-40. PubMed ID: 14757074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive transformation of birnessite by aqueous Mn(II).
    Elzinga EJ
    Environ Sci Technol; 2011 Aug; 45(15):6366-72. PubMed ID: 21675764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coprecipitation mechanisms of Zn by birnessite formation and its mineralogy under neutral pH conditions.
    Tajima S; Fuchida S; Tokoro C
    J Environ Sci (China); 2022 Nov; 121():136-147. PubMed ID: 35654505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces.
    Yin H; Sun J; Yan X; Yang X; Feng X; Tan W; Qiu G; Zhang J; Ginder-Vogel M; Liu F
    Environ Pollut; 2020 Jan; 256():113462. PubMed ID: 31706772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface.
    Power LE; Arai Y; Sparks DL
    Environ Sci Technol; 2005 Jan; 39(1):181-7. PubMed ID: 15667093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni(II) sorption on biogenic Mn-oxides with varying Mn octahedral layer structure.
    Zhu M; Ginder-Vogel M; Sparks DL
    Environ Sci Technol; 2010 Jun; 44(12):4472-8. PubMed ID: 20469849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of bacterial biomass in the sorption of Ni by biomass-birnessite assemblages.
    Peña J; Bargar JR; Sposito G
    Environ Sci Technol; 2011 Sep; 45(17):7338-44. PubMed ID: 21780745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adsorption mechanism of Zn
    Shi DD; Wang SZ; Li Y; Di YW; Wang T
    Environ Technol; 2022 Feb; 43(6):927-934. PubMed ID: 32791892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Oxyanions on Redox-driven Transformation of Layered Manganese Oxides.
    Yang P; Wen K; Beyer KA; Xu W; Wang Q; Ma D; Wu J; Zhu M
    Environ Sci Technol; 2021 Mar; 55(5):3419-3429. PubMed ID: 33600156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the sorption reactivity of bacteriogenic and mycogenic Mn oxide nanoparticles.
    Droz B; Dumas N; Duckworth OW; Peña J
    Environ Sci Technol; 2015 Apr; 49(7):4200-8. PubMed ID: 25668070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tridentate facial ligation of tris(pyridine-2-aldoximato)nickel(II) and tris(imidazole-2-aldoximato)nickel(II) To generate NiIIFeIIINiII, MnIIINiII, NiIINiII, and ZnIINiII and the electrooxidized MnIVNiII, NiIINiIII, and ZnIINiIII species: a magnetostructural, electrochemical, and EPR spectroscopic study.
    Chaudhuri P; Weyhermüller T; Wagner R; Khanra S; Biswas B; Bothe E; Bill E
    Inorg Chem; 2007 Oct; 46(21):9003-16. PubMed ID: 17718561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.
    Feng XH; Zhai LM; Tan WF; Liu F; He JZ
    Environ Pollut; 2007 May; 147(2):366-73. PubMed ID: 16996175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive Fe(II)-Zn(II) uptake on a synthetic montmorillonite.
    Soltermann D; Marques Fernandes M; Baeyens B; Miehé-Brendlé J; Dähn R
    Environ Sci Technol; 2014; 48(1):190-8. PubMed ID: 24289476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.