BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1085 related articles for article (PubMed ID: 28195832)

  • 1. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.
    Miao S; Zhu W; Castro NJ; Nowicki M; Zhou X; Cui H; Fisher JP; Zhang LG
    Sci Rep; 2016 Jun; 6():27226. PubMed ID: 27251982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system.
    Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW
    Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering.
    Luo Y; Wu C; Lode A; Gelinsky M
    Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells.
    Hendrikson WJ; Rouwkema J; Clementi F; van Blitterswijk CA; Farè S; Moroni L
    Biofabrication; 2017 Aug; 9(3):031001. PubMed ID: 28726680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.
    Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW
    Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation.
    Miao S; Cui H; Nowicki M; Lee SJ; Almeida J; Zhou X; Zhu W; Yao X; Masood F; Plesniak MW; Mohiuddin M; Zhang LG
    Biofabrication; 2018 May; 10(3):035007. PubMed ID: 29651999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.
    Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM
    Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution PLA-based composite scaffolds via 3-D printing technology.
    Serra T; Planell JA; Navarro M
    Acta Biomater; 2013 Mar; 9(3):5521-30. PubMed ID: 23142224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration.
    Wang Y; Cui H; Wang Y; Xu C; Esworthy TJ; Hann SY; Boehm M; Shen YL; Mei D; Zhang LG
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12746-12758. PubMed ID: 33405502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4D printing of biocompatible, hierarchically porous shape memory polymeric structures.
    Bond G; Mahjoubnia A; Zhao W; King SD; Chen SY; Lin J
    Biomater Adv; 2023 Oct; 153():213575. PubMed ID: 37557033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.
    Domingos M; Gloria A; Coelho J; Bartolo P; Ciurana J
    Proc Inst Mech Eng H; 2017 Jun; 231(6):555-564. PubMed ID: 28056713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering.
    Saska S; Pires LC; Cominotte MA; Mendes LS; de Oliveira MF; Maia IA; da Silva JVL; Ribeiro SJL; Cirelli JA
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():265-273. PubMed ID: 29752098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.