BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 28196070)

  • 1. Differential paralog divergence modulates genome evolution across yeast species.
    Sanchez MR; Miller AW; Liachko I; Sunshine AB; Lynch B; Huang M; Alcantara E; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    PLoS Genet; 2017 Feb; 13(2):e1006585. PubMed ID: 28196070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Analysis of the SUL1 Promoter of Saccharomyces cerevisiae.
    Rich MS; Payen C; Rubin AF; Ong GT; Sanchez MR; Yachie N; Dunham MJ; Fields S
    Genetics; 2016 May; 203(1):191-202. PubMed ID: 26936925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.
    Payen C; Di Rienzi SC; Ong GT; Pogachar JL; Sanchez JC; Sunshine AB; Raghuraman MK; Brewer BJ; Dunham MJ
    G3 (Bethesda); 2014 Mar; 4(3):399-409. PubMed ID: 24368781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast.
    Smukowski Heil CS; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    Mol Biol Evol; 2017 Jul; 34(7):1596-1612. PubMed ID: 28369610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature preference can bias parental genome retention during hybrid evolution.
    Smukowski Heil CS; Large CRL; Patterson K; Hickey AS; Yeh CC; Dunham MJ
    PLoS Genet; 2019 Sep; 15(9):e1008383. PubMed ID: 31525194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sul1 and Sul2 sulfate transceptors signal to protein kinase A upon exit of sulfur starvation.
    Kankipati HN; Rubio-Texeira M; Castermans D; Diallinas G; Thevelein JM
    J Biol Chem; 2015 Apr; 290(16):10430-46. PubMed ID: 25724649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Identification of Adaptive Mutations in Experimentally Evolved Yeast Populations.
    Payen C; Sunshine AB; Ong GT; Pogachar JL; Zhao W; Dunham MJ
    PLoS Genet; 2016 Oct; 12(10):e1006339. PubMed ID: 27727276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression.
    Dunn B; Paulish T; Stanbery A; Piotrowski J; Koniges G; Kroll E; Louis EJ; Liti G; Sherlock G; Rosenzweig F
    PLoS Genet; 2013 Mar; 9(3):e1003366. PubMed ID: 23555283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
    Gresham D; Desai MM; Tucker CM; Jenq HT; Pai DA; Ward A; DeSevo CG; Botstein D; Dunham MJ
    PLoS Genet; 2008 Dec; 4(12):e1000303. PubMed ID: 19079573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation.
    Kinsler G; Geiler-Samerotte K; Petrov DA
    Elife; 2020 Dec; 9():. PubMed ID: 33263280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitness benefits of loss of heterozygosity in
    Lancaster SM; Payen C; Smukowski Heil C; Dunham MJ
    Genome Res; 2019 Oct; 29(10):1685-1692. PubMed ID: 31548357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.
    Kempf C; Lengeler K; Wendland J
    Microbiol Res; 2017 Jul; 200():53-63. PubMed ID: 28527764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae.
    Strope PK; Kozmin SG; Skelly DA; Magwene PM; Dietrich FS; McCusker JH
    FEMS Yeast Res; 2015 Dec; 15(8):. PubMed ID: 26463005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradual genome stabilisation by progressive reduction of the Saccharomyces uvarum genome in an interspecific hybrid with Saccharomyces cerevisiae.
    Antunovics Z; Nguyen HV; Gaillardin C; Sipiczki M
    FEMS Yeast Res; 2005 Dec; 5(12):1141-50. PubMed ID: 15982931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae.
    Sellis D; Kvitek DJ; Dunn B; Sherlock G; Petrov DA
    Genetics; 2016 Jul; 203(3):1401-13. PubMed ID: 27194750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae.
    Fisher KJ; Buskirk SW; Vignogna RC; Marad DA; Lang GI
    PLoS Genet; 2018 May; 14(5):e1007396. PubMed ID: 29799840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial inheritance and fermentative : oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum.
    Solieri L; Antúnez O; Pérez-Ortín JE; Barrio E; Giudici P
    Yeast; 2008 Jul; 25(7):485-500. PubMed ID: 18615860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Genetic and Physiological Divergence on the Evolution of a Sulfate-Reducing Bacterium under Conditions of Elevated Temperature.
    Kempher ML; Tao X; Song R; Wu B; Stahl DA; Wall JD; Arkin AP; Zhou A; Zhou J
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of hybrid transgression on environmental tolerance in experimental yeast crosses.
    Stelkens RB; Brockhurst MA; Hurst GD; Miller EL; Greig D
    J Evol Biol; 2014 Nov; 27(11):2507-19. PubMed ID: 25262771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.