BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28196457)

  • 1. Dermal absorption of fumigant gases during HAZMAT incident exposure scenarios-Methyl bromide, sulfuryl fluoride, and chloropicrin.
    Gaskin S; Heath L; Pisaniello D; Edwards JW; Logan M; Baxter C
    Toxicol Ind Health; 2017 Jul; 33(7):547-554. PubMed ID: 28196457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin Absorption of Ethylene Oxide Gas Following Exposures Relevant to HAZMAT Incidents.
    Heath L; Gaskin S; Pisaniello D; Crea J; Logan M; Baxter C
    Ann Work Expo Health; 2017 Jun; 61(5):589-595. PubMed ID: 28472269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorine and hydrogen cyanide gas interactions with human skin: in vitro studies to inform skin permeation and decontamination in HAZMAT incidents.
    Gaskin S; Pisaniello D; Edwards JW; Bromwich D; Reed S; Logan M; Baxter C
    J Hazard Mater; 2013 Nov; 262():759-65. PubMed ID: 24140525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin permeation of oxides of nitrogen and sulfur from short-term exposure scenarios relevant to hazardous material incidents.
    Gaskin S; Heath L; Pisaniello D; Logan M; Baxter C
    Sci Total Environ; 2019 May; 665():937-943. PubMed ID: 30893753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of skin contamination studies of ammonia gas for management of hazardous material incidents.
    Gaskin S; Pisaniello D; Edwards JW; Bromwich D; Reed S; Logan M; Baxter C
    J Hazard Mater; 2013 May; 252-253():338-46. PubMed ID: 23542324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental and health risks of sulfuryl fluoride, a fumigant replacement for methyl bromide.
    Tsai WT
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2010 Apr; 28(2):125-45. PubMed ID: 20552499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen sulphide and phosphine interactions with human skin in vitro.
    Gaskin S; Heath L; Pisaniello D; Evans R; Edwards JW; Logan M; Baxter C
    Toxicol Ind Health; 2017 Apr; 33(4):289-296. PubMed ID: 26939834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of sorbent materials for the sampling and analysis of phosphine, sulfuryl fluoride and methyl bromide in air.
    Magnusson R; Rittfeldt L; Åstot C
    J Chromatogr A; 2015 Jan; 1375():17-26. PubMed ID: 25512126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding skin absorption of common aldehyde vapours from exposure during hazardous material incidents.
    Thredgold L; Gaskin S; Heath L; Pisaniello D; Logan M; Baxter C
    J Expo Sci Environ Epidemiol; 2020 May; 30(3):537-546. PubMed ID: 30770841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vitro methods for testing dermal absorption and penetration of toxic gases.
    Gaskin S; Pisaniello D; Edwards JW; Bromwich D; Reed S; Logan M; Baxter C
    Toxicol Mech Methods; 2014 Jan; 24(1):70-2. PubMed ID: 24156547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of sulfuryl fluoride as a soil fumigant in China.
    Cao A; Guo M; Yan D; Mao L; Wang Q; Li Y; Duan X; Wang P
    Pest Manag Sci; 2014 Feb; 70(2):219-27. PubMed ID: 23512505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fumigant combinations for Cyperus esculentum L control.
    Hutchinson CM; McGiffen ME; Sims JJ; Becker JO
    Pest Manag Sci; 2004 Apr; 60(4):369-74. PubMed ID: 15119599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic fluoride poisoning and death from inhalational exposure to sulfuryl fluoride.
    Schneir A; Clark RF; Kene M; Betten D
    Clin Toxicol (Phila); 2008 Nov; 46(9):850-4. PubMed ID: 18608259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurobehavioral evaluation of soil and structural fumigators using methyl bromide and sulfuryl fluoride.
    Anger WK; Moody L; Burg J; Brightwell WS; Taylor BJ; Russo JM; Dickerson N; Setzer JV; Johnson BL; Hicks K
    Neurotoxicology; 1986; 7(3):137-56. PubMed ID: 3822255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is secondary chemical exposure of hospital personnel of clinical importance?
    De Groot R; Van Zoelen GA; Leenders MEC; Van Riel AJHP; De Vries I; De Lange DW
    Clin Toxicol (Phila); 2021 Apr; 59(4):269-278. PubMed ID: 33448889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of application timing and method on efficacy and phytotoxicity of 1,3-D, chloropicrin and metam-sodium combinations in squash plasticulture.
    Desaeger JA; Seebold KW; Csinos AS
    Pest Manag Sci; 2008 Mar; 64(3):230-8. PubMed ID: 18181144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-care Decontamination within a Chemical Exposure Mass-casualty Incident.
    Monteith RG; Pearce LD
    Prehosp Disaster Med; 2015 Jun; 30(3):288-96. PubMed ID: 25915603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant.
    Ruzo LO
    Pest Manag Sci; 2006 Feb; 62(2):99-113. PubMed ID: 16308867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modern concepts of treatment and prevention of chemical injuries.
    Edlich RF; Farinholt HM; Winters KL; Britt LD; Long WB; Werner CL; Gubler KD
    J Long Term Eff Med Implants; 2005; 15(3):303-18. PubMed ID: 16022641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing workplace chemical exposures: the role of exposure monitoring.
    Harper M
    J Environ Monit; 2004 May; 6(5):404-12. PubMed ID: 15152307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.