These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 28196753)

  • 1. Temporal and spatial occlusion of advanced visual information constrains movement (re)organization in one-handed catching behaviors.
    Stone JA; Maynard IW; North JS; Panchuk D; Davids K
    Acta Psychol (Amst); 2017 Mar; 174():80-88. PubMed ID: 28196753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (De)synchronization of advanced visual information and ball flight characteristics constrains emergent information-movement couplings during one-handed catching.
    Stone JA; Maynard IW; North JS; Panchuk D; Davids K
    Exp Brain Res; 2015 Feb; 233(2):449-58. PubMed ID: 25362517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergent perception-action couplings regulate postural adjustments during performance of externally-timed dynamic interceptive actions.
    Stone JA; Maynard IW; North JS; Panchuk D; Davids K
    Psychol Res; 2015 Sep; 79(5):829-43. PubMed ID: 25260389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cue informativeness constrains visual tracking during an interceptive timing task.
    Akl J; Panchuk D
    Atten Percept Psychophys; 2016 May; 78(4):1115-24. PubMed ID: 26975450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Did you see that? Dissociating advanced visual information and ball flight constrains perception and action processes during one-handed catching.
    Panchuk D; Davids K; Sakadjian A; Macmahon C; Parrington L
    Acta Psychol (Amst); 2013 Mar; 142(3):394-401. PubMed ID: 23435115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grasping in One-Handed Catching in Relation to Performance.
    Cesqui B; Russo M; Lacquaniti F; d'Avella A
    PLoS One; 2016; 11(7):e0158606. PubMed ID: 27392041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catching a gently thrown ball.
    López-Moliner J; Brenner E; Louw S; Smeets JB
    Exp Brain Res; 2010 Oct; 206(4):409-17. PubMed ID: 20862460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catching optical information for the regulation of timing.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Exp Brain Res; 2004 Apr; 155(4):427-38. PubMed ID: 15045207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective versus predictive control in timing of hitting a falling ball.
    Katsumata H; Russell DM
    Exp Brain Res; 2012 Feb; 216(4):499-514. PubMed ID: 22120106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of stereo vision to one-handed catching.
    Mazyn LI; Lenoir M; Montagne G; Savelsbergh GJ
    Exp Brain Res; 2004 Aug; 157(3):383-90. PubMed ID: 15221161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catching what we can't see: manual interception of occluded fly-ball trajectories.
    Bosco G; Delle Monache S; Lacquaniti F
    PLoS One; 2012; 7(11):e49381. PubMed ID: 23166653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balls to the wall: how acoustic information from a ball in motion guides interceptive movement in people with Parkinson's disease.
    Bieńkiewicz MM; Young WR; Craig CM
    Neuroscience; 2014 Sep; 275():508-18. PubMed ID: 24995419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of information-movement couplings in a rhythmical ball-bouncing task: from space- to time-related information.
    Bazile C; Benguigui N; Siegler IA
    Exp Brain Res; 2016 Jan; 234(1):173-83. PubMed ID: 26410820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How position, velocity, and temporal information combine in the prospective control of catching: data and model.
    Dessing JC; Peper CL; Bullock D; Beek PJ
    J Cogn Neurosci; 2005 Apr; 17(4):668-86. PubMed ID: 15829086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing the kinematics of hand movements in catching tasks-An online correction analysis of movement toward the target's trajectory.
    Slupinski L; de Lussanet MHE; Wagner H
    Behav Res Methods; 2018 Dec; 50(6):2316-2324. PubMed ID: 29218585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal adaptations that accompany increasing catching performance during learning.
    Mazyn LI; Lenoir M; Montagne G; Savelsbergh GJ
    J Mot Behav; 2007 Nov; 39(6):491-502. PubMed ID: 18055355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How efficient are central mechanisms for the learning and retention of coincident timing actions?
    Fleury M; Bard C; Teasdale N; Michaud D; Lamarre Y
    Neuropsychologia; 1999 Jun; 37(6):723-30. PubMed ID: 10390034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The visual guidance of catching.
    Savelsbergh GJ; Whiting HT; Pijpers JR; van Santvoord AA
    Exp Brain Res; 1993; 93(1):148-56. PubMed ID: 8467884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The control and coordination of one-handed catching: the effect of temporal constraints.
    Laurent M; Montagne G; Savelsbergh GJ
    Exp Brain Res; 1994; 101(2):314-22. PubMed ID: 7843318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminating the role of binocular information in the timing of a one-handed catch. The effects of telestereoscopic viewing and ball size.
    Bennett SJ; van der Kamp J; Savelsbergh GJ; Davids K
    Exp Brain Res; 2000 Dec; 135(3):341-7. PubMed ID: 11146812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.