These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28196754)
1. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Li Z; Chen X; Liu W; Si B Sci Total Environ; 2017 May; 586():827-835. PubMed ID: 28196754 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of groundwater recharge in the thick loess deposits by multiple environmental tracers. Wang W; Li S; Sun J; Huang Y; Han F; Li Z Sci Total Environ; 2023 Nov; 897():165360. PubMed ID: 37419345 [TBL] [Abstract][Full Text] [Related]
3. Deep rooted apple trees decrease groundwater recharge in the highland region of the Loess Plateau, China. Zhang Z; Li M; Si B; Feng H Sci Total Environ; 2018 May; 622-623():584-593. PubMed ID: 29223082 [TBL] [Abstract][Full Text] [Related]
4. Field variation of groundwater recharge and its uncertainty via multiple tracers' method in deep loess vadose zone. Li H; Li M; Miao C; Si B; Lu Y Sci Total Environ; 2023 Jun; 876():162752. PubMed ID: 36906021 [TBL] [Abstract][Full Text] [Related]
5. Land use change impacts on the amount and quality of recharge water in the loess tablelands of China. Huang Y; Chang Q; Li Z Sci Total Environ; 2018 Jul; 628-629():443-452. PubMed ID: 29453173 [TBL] [Abstract][Full Text] [Related]
6. [Characteristics and Indicative Significance of Groundwater Stable Isotopes in the Loess Plateau at the Regional Scale]. Xiang W; Liu X; Si BC Huan Jing Ke Xue; 2024 Sep; 45(9):5290-5297. PubMed ID: 39323147 [TBL] [Abstract][Full Text] [Related]
7. Estimation of groundwater recharge via deuterium labelling in the semi-arid Cuvelai-Etosha Basin, Namibia. Beyer M; Gaj M; Hamutoko JT; Koeniger P; Wanke H; Himmelsbach T Isotopes Environ Health Stud; 2015; 51(4):533-52. PubMed ID: 26414647 [TBL] [Abstract][Full Text] [Related]
8. Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations. Stadler S; Osenbruck K; Duijnisveld WH; Schwiede M; Bottcher J Isotopes Environ Health Stud; 2010 Sep; 46(3):312-24. PubMed ID: 20812119 [TBL] [Abstract][Full Text] [Related]
9. Precipitation recharges the shallow groundwater of check dams in the loessial hilly and gully region of China. Luo Z; Yong C; Fan J; Shao M; Wang S; Jin M Sci Total Environ; 2020 Nov; 742():140625. PubMed ID: 32721743 [TBL] [Abstract][Full Text] [Related]
10. Potential groundwater recharge from deep drainage of irrigation water. Altafi Dadgar M; Nakhaei M; Porhemmat J; Eliasi B; Biswas A Sci Total Environ; 2020 May; 716():137105. PubMed ID: 32044499 [TBL] [Abstract][Full Text] [Related]
11. Evaluating potential groundwater recharge in the unsteady state for deep-rooted afforestation in deep loess deposits. Chen G; Meng T; Wu W; Si B; Li M; Liu B; Wu S; Feng H; Siddique KHM Sci Total Environ; 2023 Feb; 858(Pt 2):159837. PubMed ID: 36411672 [TBL] [Abstract][Full Text] [Related]
12. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones. Delin GN; Herkelrath WN J Contam Hydrol; 2017 May; 200():49-59. PubMed ID: 28390700 [TBL] [Abstract][Full Text] [Related]
13. Soil water balance in the Lake Chad Basin using stable water isotopes and chloride of soil profiles. Tewolde DO; Koeniger P; Beyer M; Neukum C; Gröschke M; Ronelngar M; Rieckh H; Vassolo S Isotopes Environ Health Stud; 2019 Oct; 55(5):459-477. PubMed ID: 31366247 [TBL] [Abstract][Full Text] [Related]
14. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab. Keesari T; Sharma DA; Rishi MS; Pant D; Mohokar HV; Jaryal AK; Sinha UK Appl Radiat Isot; 2017 Nov; 129():163-170. PubMed ID: 28865336 [TBL] [Abstract][Full Text] [Related]
15. Soil Water Movement and Groundwater Recharge Under Different Land Uses in a Flood-Irrigated Area. Yang L; Song X; Ma Y; Gong L; Zhao Z Ground Water; 2024; 62(2):212-225. PubMed ID: 37254684 [TBL] [Abstract][Full Text] [Related]
16. Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin. Hao S; Li F; Li Y; Gu C; Zhang Q; Qiao Y; Jiao L; Zhu N Sci Total Environ; 2019 Mar; 657():1041-1050. PubMed ID: 30677872 [TBL] [Abstract][Full Text] [Related]
17. Recharge contribution to the Guarani Aquifer System estimated from the water balance method in a representative watershed. Wendland E; Gomes LH; Troeger U An Acad Bras Cienc; 2015; 87(2):595-609. PubMed ID: 25993364 [TBL] [Abstract][Full Text] [Related]
18. Improved Recharge Estimation from Portable, Low-Cost Weather Stations. Holländer HM; Wang Z; Assefa KA; Woodbury AD Ground Water; 2016 Mar; 54(2):243-54. PubMed ID: 26011672 [TBL] [Abstract][Full Text] [Related]
19. Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain). Hornero J; Manzano M; Ortega L; Custodio E Sci Total Environ; 2016 Oct; 568():415-432. PubMed ID: 27310533 [TBL] [Abstract][Full Text] [Related]
20. Groundwater recharge at five representative sites in the Hebei Plain, China. Lu X; Jin M; van Genuchten MT; Wang B Ground Water; 2011; 49(2):286-94. PubMed ID: 20100294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]