These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28196754)
21. Groundwater recharge and water table response to changing conditions for aquifers at different physiography: The case of a semi-humid river catchment, northwestern highlands of Ethiopia. Yenehun A; Nigate F; Belay AS; Desta MT; Van Camp M; Walraevens K Sci Total Environ; 2020 Dec; 748():142243. PubMed ID: 33113708 [TBL] [Abstract][Full Text] [Related]
22. Salix psammophila afforestations can cause a decline of the water table, prevent groundwater recharge and reduce effective infiltration. Zhang Z; Wang W; Gong C; Zhao M; Franssen HH; Brunner P Sci Total Environ; 2021 Aug; 780():146336. PubMed ID: 34030299 [TBL] [Abstract][Full Text] [Related]
23. Groundwater recharge rate and zone structure estimation using PSOLVER algorithm. Ayvaz MT; Elçi A Ground Water; 2014; 52(3):434-47. PubMed ID: 23746002 [TBL] [Abstract][Full Text] [Related]
24. Sensitivity of mGROWA-simulated groundwater recharge to changes in soil and land use parameters in a Mediterranean environment and conclusions in view of ensemble-based climate impact simulations. Ehlers L; Herrmann F; Blaschek M; Duttmann R; Wendland F Sci Total Environ; 2016 Feb; 543(Pt B):937-51. PubMed ID: 25980930 [TBL] [Abstract][Full Text] [Related]
25. Groundwater recharge and hydrodynamics of complex volcanic aquifers with a shallow saline lake: Laguna Tuyajto, Andean Cordillera of northern Chile. Urrutia J; Herrera C; Custodio E; Jódar J; Medina A Sci Total Environ; 2019 Dec; 697():134116. PubMed ID: 32380610 [TBL] [Abstract][Full Text] [Related]
26. Integrated application of a Bayesian mixing model, numerical model, and environmental tracers to characterize groundwater recharge sources in a mountainous area. Koh EH; Lee E; Lee KK; Moon DC Sci Total Environ; 2022 Dec; 853():158619. PubMed ID: 36084785 [TBL] [Abstract][Full Text] [Related]
27. Chloride tracer of the loess unsaturated zone under sub-humid region: A potential proxy recording high-resolution hydroclimate. Lu Y; Li H; Si B; Li M Sci Total Environ; 2020 Jan; 700():134465. PubMed ID: 31706090 [TBL] [Abstract][Full Text] [Related]
28. Incorporating Snowmelt into Daily Estimates of Recharge Using a State-Space Model of Infiltration. Shapiro AM; Day-Lewis FD; Kappel WM; Williams JH Ground Water; 2022 Nov; 60(6):721-746. PubMed ID: 35524981 [TBL] [Abstract][Full Text] [Related]
29. [Characteristics of stable isotopes in soil water under several typical land use patterns on Loess Tableland]. Cheng LP; Liu WZ Ying Yong Sheng Tai Xue Bao; 2012 Mar; 23(3):651-8. PubMed ID: 22720607 [TBL] [Abstract][Full Text] [Related]
30. [Characteristics and Significance of Stable Isotopes and Hydrochemistry in Surface Water and Groundwater in Nanxiaohegou Basin]. Guo YW; Tian FQ; Hu HC; Liu YP; Zhao SH Huan Jing Ke Xue; 2020 Feb; 41(2):682-690. PubMed ID: 32608727 [TBL] [Abstract][Full Text] [Related]
31. Importance of unsaturated zone flow for simulating recharge in a humid climate. Hunt RJ; Prudic DE; Walker JF; Anderson MP Ground Water; 2008; 46(4):551-60. PubMed ID: 18266728 [TBL] [Abstract][Full Text] [Related]
32. Interpretation of environmental tracers in groundwater systems with stagnant water zones. Maloszewski P; Stichler W; Zuber A Isotopes Environ Health Stud; 2004 Mar; 40(1):21-33. PubMed ID: 15085981 [TBL] [Abstract][Full Text] [Related]
33. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling. Santos IR; Zhang C; Maher DT; Atkins ML; Holland R; Morgenstern U; Li L Sci Total Environ; 2017 Feb; 580():367-379. PubMed ID: 27989474 [TBL] [Abstract][Full Text] [Related]
34. Modelling of recharge and pollutant fluxes to urban groundwaters. Thomas A; Tellam J Sci Total Environ; 2006 May; 360(1-3):158-79. PubMed ID: 16325236 [TBL] [Abstract][Full Text] [Related]
35. Stable H and O isotope variations reveal sources of recharge in Dhofar, Sultanate of Oman. Strauch G; Al-Mashaikhi KS; Bawain A; Knöller K; Friesen J; Müller T Isotopes Environ Health Stud; 2014; 50(4):475-90. PubMed ID: 25299930 [TBL] [Abstract][Full Text] [Related]
36. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania. Skuratovič Ž; Mažeika J; Petrošius R; Martma T Isotopes Environ Health Stud; 2016; 52(4-5):544-52. PubMed ID: 26586231 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of recharge in a small temperate catchment using natural and applied delta 18O profiles in the unsaturated zone. McConville C; Kalin RM; Johnston H; McNeill GW Ground Water; 2001; 39(4):616-23. PubMed ID: 11447861 [TBL] [Abstract][Full Text] [Related]
38. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain. Herrera C; Custodio E Sci Total Environ; 2014 Oct; 496():531-550. PubMed ID: 25108255 [TBL] [Abstract][Full Text] [Related]
39. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Hartmann A; Gleeson T; Wada Y; Wagener T Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2842-2847. PubMed ID: 28242703 [TBL] [Abstract][Full Text] [Related]
40. Environmental isotopic and hydrochemical characteristics of groundwater from the Sandspruit Catchment, Berg River Basin, South Africa. Naicker S; Demlie M Water Sci Technol; 2014; 69(3):601-11. PubMed ID: 24552734 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]