These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28196861)

  • 1. Molecular determinants of the N-terminal acetyltransferase Naa60 anchoring to the Golgi membrane.
    Aksnes H; Goris M; Strømland Ø; Drazic A; Waheed Q; Reuter N; Arnesen T
    J Biol Chem; 2017 Apr; 292(16):6821-6837. PubMed ID: 28196861
    [No Abstract]   [Full Text] [Related]  

  • 2. An organellar nα-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity.
    Aksnes H; Van Damme P; Goris M; Starheim KK; Marie M; Støve SI; Hoel C; Kalvik TV; Hole K; Glomnes N; Furnes C; Ljostveit S; Ziegler M; Niere M; Gevaert K; Arnesen T
    Cell Rep; 2015 Mar; 10(8):1362-74. PubMed ID: 25732826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal Structure of the Golgi-Associated Human Nα-Acetyltransferase 60 Reveals the Molecular Determinants for Substrate-Specific Acetylation.
    Støve SI; Magin RS; Foyn H; Haug BE; Marmorstein R; Arnesen T
    Structure; 2016 Jul; 24(7):1044-56. PubMed ID: 27320834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase.
    Chen JY; Liu L; Cao CL; Li MJ; Tan K; Yang X; Yun CH
    Sci Rep; 2016 Aug; 6():31425. PubMed ID: 27550639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arabidopsis N
    Linster E; Layer D; Bienvenut WV; Dinh TV; Weyer FA; Leemhuis W; Brünje A; Hoffrichter M; Miklankova P; Kopp J; Lapouge K; Sindlinger J; Schwarzer D; Meinnel T; Finkemeier I; Giglione C; Hell R; Sinning I; Wirtz M
    New Phytol; 2020 Oct; 228(2):554-569. PubMed ID: 32548857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAA60 (HAT4): the newly discovered bi-functional Golgi member of the acetyltransferase family.
    Donnarumma F; Tucci V; Ambrosino C; Altucci L; Carafa V
    Clin Epigenetics; 2022 Dec; 14(1):182. PubMed ID: 36539894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human N-Alpha-Acetyltransferase 60 Promotes Influenza A Virus Infection by Dampening the Interferon Alpha Signaling.
    Ahmed F; Husain M
    Front Immunol; 2021; 12():771792. PubMed ID: 35095845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topology of amphipathic motifs mediating Golgi localization in ArfGAP1 and its splice isoforms.
    Levi S; Rawet M; Kliouchnikov L; Parnis A; Cassel D
    J Biol Chem; 2008 Mar; 283(13):8564-72. PubMed ID: 18195007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopy-based Saccharomyces cerevisiae complementation model reveals functional conservation and redundancy of N-terminal acetyltransferases.
    Osberg C; Aksnes H; Ninzima S; Marie M; Arnesen T
    Sci Rep; 2016 Aug; 6():31627. PubMed ID: 27555049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holding it together: Naa60 at the Golgi.
    Aksnes H; Marie M; Arnesen T
    Oncotarget; 2015 Jun; 6(18):15726-7. PubMed ID: 26164078
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine Bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 2004 Oct; 87(4):2470-82. PubMed ID: 15454444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural investigations of basic amphipathic model peptides in the presence of lipid vesicles studied by circular dichroism, fluorescence, monolayer and modeling.
    Mangavel C; Maget-Dana R; Tauc P; Brochon JC; Sy D; Reynaud JA
    Biochim Biophys Acta; 1998 May; 1371(2):265-83. PubMed ID: 9630666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi.
    Webb RJ; East JM; Sharma RP; Lee AG
    Biochemistry; 1998 Jan; 37(2):673-9. PubMed ID: 9425090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of the human N-terminal acetyltransferase hNaa30 disrupts Golgi integrity and ARFRP1 localization.
    Starheim KK; Kalvik TV; Bjørkøy G; Arnesen T
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28356483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles.
    Rozek A; Friedrich CL; Hancock RE
    Biochemistry; 2000 Dec; 39(51):15765-74. PubMed ID: 11123901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and membrane orientation of the fukutin transmembrane domain: a combined multiscale molecular dynamics and circular dichroism study.
    Holdbrook DA; Leung YM; Piggot TJ; Marius P; Williamson PT; Khalid S
    Biochemistry; 2010 Dec; 49(51):10796-802. PubMed ID: 21105749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.