These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 28196867)
1. Synaptic Activity Drives a Genomic Program That Promotes a Neuronal Warburg Effect. Bas-Orth C; Tan YW; Lau D; Bading H J Biol Chem; 2017 Mar; 292(13):5183-5194. PubMed ID: 28196867 [TBL] [Abstract][Full Text] [Related]
2. A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. Zhang SJ; Buchthal B; Lau D; Hayer S; Dick O; Schwaninger M; Veltkamp R; Zou M; Weiss U; Bading H J Neurosci; 2011 Mar; 31(13):4978-90. PubMed ID: 21451036 [TBL] [Abstract][Full Text] [Related]
3. Geissoschizine methyl ether protects oxidative stress-mediated cytotoxicity in neurons through the 'Neuronal Warburg Effect'. Sun J; Ren X; Qi W; Yuan D; Simpkins JW J Ethnopharmacol; 2016 Jul; 187():249-58. PubMed ID: 27114061 [TBL] [Abstract][Full Text] [Related]
4. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. Zhang SJ; Zou M; Lu L; Lau D; Ditzel DA; Delucinge-Vivier C; Aso Y; Descombes P; Bading H PLoS Genet; 2009 Aug; 5(8):e1000604. PubMed ID: 19680447 [TBL] [Abstract][Full Text] [Related]
5. Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to OGD/recovery. Ouyang L; Tian Y; Bao Y; Xu H; Cheng J; Wang B; Shen Y; Chen Z; Lyu J Brain Res Bull; 2016 Jun; 124():76-84. PubMed ID: 27040711 [TBL] [Abstract][Full Text] [Related]
6. Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors. Wahl AS; Buchthal B; Rode F; Bomholt SF; Freitag HE; Hardingham GE; Rønn LC; Bading H Neuroscience; 2009 Jan; 158(1):344-52. PubMed ID: 18616988 [TBL] [Abstract][Full Text] [Related]
7. Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held. Lujan BJ; Singh M; Singh A; Renden RB J Neurophysiol; 2021 Oct; 126(4):976-996. PubMed ID: 34432991 [TBL] [Abstract][Full Text] [Related]
8. Differential Presynaptic ATP Supply for Basal and High-Demand Transmission. Sobieski C; Fitzpatrick MJ; Mennerick SJ J Neurosci; 2017 Feb; 37(7):1888-1899. PubMed ID: 28093477 [TBL] [Abstract][Full Text] [Related]
9. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses. Nakayama K; Kiyosue K; Taguchi T J Neurosci; 2005 Apr; 25(16):4040-51. PubMed ID: 15843606 [TBL] [Abstract][Full Text] [Related]
10. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Magistretti PJ; Pellerin L Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143 [TBL] [Abstract][Full Text] [Related]
11. Novel model of neuronal bioenergetics: postsynaptic utilization of glucose but not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons. Bak LK; Obel LF; Walls AB; Schousboe A; Faek SA; Jajo FS; Waagepetersen HS ASN Neuro; 2012 Apr; 4(3):. PubMed ID: 22385215 [TBL] [Abstract][Full Text] [Related]
12. Comparison of glucose and lactate as substrates during NMDA-induced activation of hippocampal slices. Chih CP; He J; Sly TS; Roberts EL Brain Res; 2001 Mar; 893(1-2):143-54. PubMed ID: 11223002 [TBL] [Abstract][Full Text] [Related]
13. Synaptic activity induces signalling to CREB without increasing global levels of cAMP in hippocampal neurons. Pokorska A; Vanhoutte P; Arnold FJ; Silvagno F; Hardingham GE; Bading H J Neurochem; 2003 Feb; 84(3):447-52. PubMed ID: 12558964 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Liu D; Chan SL; de Souza-Pinto NC; Slevin JR; Wersto RP; Zhan M; Mustafa K; de Cabo R; Mattson MP Neuromolecular Med; 2006; 8(3):389-414. PubMed ID: 16775390 [TBL] [Abstract][Full Text] [Related]
15. Depletion of the AMPAR reserve pool impairs synaptic plasticity in a model of hepatic encephalopathy. Schroeter A; Wen S; Mölders A; Erlenhardt N; Stein V; Klöcker N Mol Cell Neurosci; 2015 Sep; 68():331-9. PubMed ID: 26363416 [TBL] [Abstract][Full Text] [Related]
16. Estrogen receptor alpha and beta differentially regulate intracellular Ca(2+) dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Zhao L; Brinton RD Brain Res; 2007 Oct; 1172():48-59. PubMed ID: 17803971 [TBL] [Abstract][Full Text] [Related]
17. Dopamine-dependent effects on basal and glutamate stimulated network dynamics in cultured hippocampal neurons. Li Y; Chen X; Dzakpasu R; Conant K J Neurochem; 2017 Feb; 140(4):550-560. PubMed ID: 27925199 [TBL] [Abstract][Full Text] [Related]
18. Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: a possible role for mast cells. Skaper SD; Facci L; Kee WJ; Strijbos PJ J Neurochem; 2001 Jan; 76(1):47-55. PubMed ID: 11145977 [TBL] [Abstract][Full Text] [Related]
19. Activity-dependent regulation of mitochondrial motility in developing cortical dendrites. Silva CA; Yalnizyan-Carson A; Fernández Busch MV; van Zwieten M; Verhage M; Lohmann C Elife; 2021 Sep; 10():. PubMed ID: 34491202 [TBL] [Abstract][Full Text] [Related]
20. Heterologous modulation of inhibitory synaptic transmission by metabotropic glutamate receptors in cultured hippocampal neurons. Fitzsimonds RM; Dichter MA J Neurophysiol; 1996 Feb; 75(2):885-93. PubMed ID: 8714661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]