These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28197088)

  • 21. Controlling Synchronization of Spiking Neuronal Networks by Harnessing Synaptic Plasticity.
    Schmalz J; Kumar G
    Front Comput Neurosci; 2019; 13():61. PubMed ID: 31551743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synchronization and sensitivity enhancement of the Hodgkin-Huxley neurons due to inhibitory inputs.
    Luk WK; Aihara K
    Biol Cybern; 2000 Jun; 82(6):455-67. PubMed ID: 10879429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic modifications driven by spike-timing-dependent plasticity in weakly coupled bursting neurons.
    Zhou JF; Yuan WJ; Chen D; Wang BH; Zhou Z; Boccaletti S; Wang Z
    Phys Rev E; 2019 Mar; 99(3-1):032419. PubMed ID: 30999534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spike-Timing Dependent Plasticity Effect on the Temporal Patterning of Neural Synchronization.
    Zirkle J; Rubchinsky LL
    Front Comput Neurosci; 2020; 14():52. PubMed ID: 32595464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs.
    Bi Z; Zhou C
    Front Comput Neurosci; 2016; 10():14. PubMed ID: 26941634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. STDP in Oscillatory Recurrent Networks: Theoretical Conditions for Desynchronization and Applications to Deep Brain Stimulation.
    Pfister JP; Tass PA
    Front Comput Neurosci; 2010; 4():. PubMed ID: 20802859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels.
    Wang G; Fu Y
    Math Biosci Eng; 2023 Jan; 20(2):3944-3969. PubMed ID: 36899611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. When Long-Range Zero-Lag Synchronization is Feasible in Cortical Networks.
    Viriyopase A; Bojak I; Zeitler M; Gielen S
    Front Comput Neurosci; 2012; 6():49. PubMed ID: 22866034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity.
    Nowotny T; Zhigulin VP; Selverston AI; Abarbanel HD; Rabinovich MI
    J Neurosci; 2003 Oct; 23(30):9776-85. PubMed ID: 14586005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control of inter-layer synchronization by multiplexing noise.
    Vadivasova TE; Slepnev AV; Zakharova A
    Chaos; 2020 Sep; 30(9):091101. PubMed ID: 33003909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spiking neural network model for memorizing sequences with forward and backward recall.
    Borisyuk R; Chik D; Kazanovich Y; da Silva Gomes J
    Biosystems; 2013 Jun; 112(3):214-23. PubMed ID: 23562400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Propagation of firing rate by synchronization and coherence of firing pattern in a feed-forward multilayer neural network.
    Yi M; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061924. PubMed ID: 20866457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's dynamical landscape.
    Roy D; Sigala R; Breakspear M; McIntosh AR; Jirsa VK; Deco G; Ritter P
    Brain Connect; 2014 Dec; 4(10):791-811. PubMed ID: 25131838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synchronization in hybrid neuronal networks of the hippocampal formation.
    Netoff TI; Banks MI; Dorval AD; Acker CD; Haas JS; Kopell N; White JA
    J Neurophysiol; 2005 Mar; 93(3):1197-208. PubMed ID: 15525802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
    Strain TJ; McDaid LJ; McGinnity TM; Maguire LP; Sayers HM
    Int J Neural Syst; 2010 Dec; 20(6):463-80. PubMed ID: 21117270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spike-timing dependent plasticity in a transistor-selected resistive switching memory.
    Ambrogio S; Balatti S; Nardi F; Facchinetti S; Ielmini D
    Nanotechnology; 2013 Sep; 24(38):384012. PubMed ID: 23999495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.