These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28197650)

  • 1. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.
    Bicer Y; Dincer I; Vezina G; Raso F
    Environ Manage; 2017 May; 59(5):842-855. PubMed ID: 28197650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico.
    Morales Mora MA; Vergara CP; Leiva MA; Martínez Delgadillo SA; Rosa-Domínguez ER
    J Environ Manage; 2016 Dec; 183(Pt 3):998-1008. PubMed ID: 27692511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental impact assessment of green ammoniacoupled with urea and ammonium nitrate production.
    Galusnyak SC; Petrescu L; Sandu VC; Cormos CC
    J Environ Manage; 2023 Oct; 343():118215. PubMed ID: 37235993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy needs versus environmental pollution: a reconciliation?
    Green L
    Science; 1967 Jun; 156(3781):1448-50. PubMed ID: 5611018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Life Cycle Assessment and Key Parameter Comparison of Hydrogen Fuel Cell Vehicles Power Systems].
    Chen YS; Lan LB; Hao Z; Fu P
    Huan Jing Ke Xue; 2022 Aug; 43(8):4402-4412. PubMed ID: 35971737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a new photoelectrochemical system for clean hydrogen production and a comparative environmental impact assessment with other production methods.
    Karaca AE; Dincer I
    Chemosphere; 2023 Oct; 337():139367. PubMed ID: 37414294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nitrogen and carbon footprints of ammonia synthesis in China based on life cycle assessment.
    Li Y; Zhang Z; Wang Q; Long X; Cao Y; Yang H; Yang Q
    J Environ Manage; 2023 Nov; 345():118848. PubMed ID: 37660421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
    Burnham A; Han J; Clark CE; Wang M; Dunn JB; Palou-Rivera I
    Environ Sci Technol; 2012 Jan; 46(2):619-27. PubMed ID: 22107036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model of environmental life cycle assessment for coal mining operations.
    Burchart-Korol D; Fugiel A; Czaplicka-Kolarz K; Turek M
    Sci Total Environ; 2016 Aug; 562():61-72. PubMed ID: 27092420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upward revision of global fossil fuel methane emissions based on isotope database.
    Schwietzke S; Sherwood OA; Bruhwiler LM; Miller JB; Etiope G; Dlugokencky EJ; Michel SE; Arling VA; Vaughn BH; White JW; Tans PP
    Nature; 2016 Oct; 538(7623):88-91. PubMed ID: 27708291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative life cycle assessment of ammonia production by coke oven gas via single and coproduction processes.
    Li J; Ma L; Qu P; Tian B; Nie Y; Liu L; Xu L; Ma X
    Sci Total Environ; 2023 Jul; 882():163638. PubMed ID: 37087007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil-Process Design and Life-Cycle Assessment.
    Sundaram S; Kolb G; Hessel V; Wang Q
    Ind Eng Chem Res; 2017 Mar; 56(12):3373-3387. PubMed ID: 28405056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RETRACTED: Ammonia synthesis. Ammonia synthesis by N₂ and steam electrolysis in molten hydroxide suspensions of nanoscale Fe₂O₃.
    Licht S; Cui B; Wang B; Li FF; Lau J; Liu S
    Science; 2014 Aug; 345(6197):637-40. PubMed ID: 25104378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion.
    Nayal FS; Mammadov A; Ciliz N
    J Environ Manage; 2016 Dec; 184(Pt 2):389-399. PubMed ID: 27742149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective carbon footprint comparison of hydrogen options.
    Valente A; Iribarren D; Dufour J
    Sci Total Environ; 2020 Aug; 728():138212. PubMed ID: 32361105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Market-driven emissions from recovery of carbon dioxide gas.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2014 Dec; 48(24):14615-23. PubMed ID: 25412142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse gases: low methane leakage from gas pipelines.
    Lelieveld J; Lechtenböhmer S; Assonov SS; Brenninkmeijer CA; Dienst C; Fischedick M; Hanke T
    Nature; 2005 Apr; 434(7035):841-2. PubMed ID: 15829951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decarbonization in ammonia production, new technological methods in industrial scale ammonia production and critical evaluations.
    Yüzbaşıoğlu AE; Tatarhan AH; Gezerman AO
    Heliyon; 2021 Oct; 7(10):e08257. PubMed ID: 34765764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.