These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 28197667)

  • 41. From fibroblast cells to cardiomyocytes: direct lineage reprogramming.
    Yang L
    Stem Cell Res Ther; 2011 Jan; 2(1):1. PubMed ID: 21241459
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of adeno-associated viral vectors targeting cardiac fibroblasts for efficient in vivo cardiac reprogramming.
    Nakano K; Sadahiro T; Fujita R; Isomi M; Abe Y; Yamada Y; Akiyama T; Honda S; French BA; Mizukami H; Ieda M
    Stem Cell Reports; 2024 Oct; 19(10):1389-1398. PubMed ID: 39241770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro Assessment of Cardiac Reprogramming by Measuring Cardiac Specific Calcium Flux with a GCaMP3 Reporter.
    Li Z; Liu L; Wang Z
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35285824
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming.
    Christoforou N; Chellappan M; Adler AF; Kirkton RD; Wu T; Addis RC; Bursac N; Leong KW
    PLoS One; 2013; 8(5):e63577. PubMed ID: 23704920
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of direct cardiac reprogramming for clinical applications.
    Yamada Y; Sadahiro T; Ieda M
    J Mol Cell Cardiol; 2023 May; 178():1-8. PubMed ID: 36918145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct cellular reprogramming techniques for cardiovascular regenerative therapeutics.
    He X; Dutta S; Liang J; Paul C; Huang W; Xu M; Chang V; Ao I; Wang Y
    Can J Physiol Pharmacol; 2024 Jan; 102(1):1-13. PubMed ID: 37903419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.
    Liu Z; Wang L; Welch JD; Ma H; Zhou Y; Vaseghi HR; Yu S; Wall JB; Alimohamadi S; Zheng M; Yin C; Shen W; Prins JF; Liu J; Qian L
    Nature; 2017 Nov; 551(7678):100-104. PubMed ID: 29072293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state.
    Fu JD; Stone NR; Liu L; Spencer CI; Qian L; Hayashi Y; Delgado-Olguin P; Ding S; Bruneau BG; Srivastava D
    Stem Cell Reports; 2013; 1(3):235-47. PubMed ID: 24319660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing Cardiomyocyte Subtypes Following Transcription Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts.
    Fernandez-Perez A; Munshi NV
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success.
    Addis RC; Ifkovits JL; Pinto F; Kellam LD; Esteso P; Rentschler S; Christoforou N; Epstein JA; Gearhart JD
    J Mol Cell Cardiol; 2013 Jul; 60():97-106. PubMed ID: 23591016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5.
    Chen JX; Krane M; Deutsch MA; Wang L; Rav-Acha M; Gregoire S; Engels MC; Rajarajan K; Karra R; Abel ED; Wu JC; Milan D; Wu SM
    Circ Res; 2012 Jun; 111(1):50-5. PubMed ID: 22581928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration.
    He WJ; Hou Q; Han QW; Han WD; Fu XB
    Tissue Eng Part B Rev; 2014 Aug; 20(4):304-13. PubMed ID: 24063625
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cardiac regeneration with pluripotent stem cell-derived cardiomyocytes and direct cardiac reprogramming.
    Sadahiro T
    Regen Ther; 2019 Dec; 11():95-100. PubMed ID: 31304202
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stoichiometric optimization of Gata4, Hand2, Mef2c, and Tbx5 expression for contractile cardiomyocyte reprogramming.
    Zhang Z; Zhang W; Nam YJ
    Sci Rep; 2019 Oct; 9(1):14970. PubMed ID: 31628386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cardiac reprogramming: from mouse toward man.
    Srivastava D; Berry EC
    Curr Opin Genet Dev; 2013 Oct; 23(5):574-8. PubMed ID: 23993230
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes.
    Bektik E; Dennis A; Prasanna P; Madabhushi A; Fu JD
    PLoS One; 2017; 12(8):e0183000. PubMed ID: 28796841
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent advances in direct cardiac reprogramming.
    Srivastava D; Yu P
    Curr Opin Genet Dev; 2015 Oct; 34():77-81. PubMed ID: 26454285
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming.
    Wang L; Liu Z; Yin C; Asfour H; Chen O; Li Y; Bursac N; Liu J; Qian L
    Circ Res; 2015 Jan; 116(2):237-44. PubMed ID: 25416133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct Reprogramming Improves Cardiac Function and Reverses Fibrosis in Chronic Myocardial Infarction.
    Tani H; Sadahiro T; Yamada Y; Isomi M; Yamakawa H; Fujita R; Abe Y; Akiyama T; Nakano K; Kuze Y; Seki M; Suzuki Y; Fujisawa M; Sakata-Yanagimoto M; Chiba S; Fukuda K; Ieda M
    Circulation; 2023 Jan; 147(3):223-238. PubMed ID: 36503256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells.
    Protze S; Khattak S; Poulet C; Lindemann D; Tanaka EM; Ravens U
    J Mol Cell Cardiol; 2012 Sep; 53(3):323-32. PubMed ID: 22575762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.