BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28197810)

  • 1. A wrist sensor and algorithm to determine instantaneous walking cadence and speed in daily life walking.
    Fasel B; Duc C; Dadashi F; Bardyn F; Savary M; Farine PA; Aminian K
    Med Biol Eng Comput; 2017 Oct; 55(10):1773-1785. PubMed ID: 28197810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-World Gait Speed Estimation Using Wrist Sensor: A Personalized Approach.
    Soltani A; Dejnabadi H; Savary M; Aminian K
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):658-668. PubMed ID: 31059461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor.
    Zihajehzadeh S; Park EJ
    PLoS One; 2016; 11(10):e0165211. PubMed ID: 27764231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IMU-based gait analysis in lower limb prosthesis users: Comparison of step demarcation algorithms.
    Bastas G; Fleck JJ; Peters RA; Zelik KE
    Gait Posture; 2018 Jul; 64():30-37. PubMed ID: 29807270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pregnancy walking cadence does not vary by trimester.
    Marshall MR; Montoye AHK; George AJ
    Gait Posture; 2018 Sep; 65():81-85. PubMed ID: 30558952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study.
    Kluge F; Brand YE; Micó-Amigo ME; Bertuletti S; D'Ascanio I; Gazit E; Bonci T; Kirk C; Küderle A; Palmerini L; Paraschiv-Ionescu A; Salis F; Soltani A; Ullrich M; Alcock L; Aminian K; Becker C; Brown P; Buekers J; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; Echevarria C; Eskofier B; Evers J; Garcia-Aymerich J; Hache T; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Koch S; Maetzler W; Megaritis D; Niessen M; Perlman O; Schwickert L; Scott K; Sharrack B; Singleton D; Vereijken B; Vogiatzis I; Yarnall A; Rochester L; Mazzà C; Del Din S; Mueller A
    JMIR Form Res; 2024 May; 8():e50035. PubMed ID: 38691395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes to gait speed and the walk ratio with rhythmic auditory cuing.
    Ducharme SW; Sands CJ; Moore CC; Aguiar EJ; Hamill J; Tudor-Locke C
    Gait Posture; 2018 Oct; 66():255-259. PubMed ID: 30219585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithms for Walking Speed Estimation Using a Lower-Back-Worn Inertial Sensor: A Cross-Validation on Speed Ranges.
    Soltani A; Aminian K; Mazza C; Cereatti A; Palmerini L; Bonci T; Paraschiv-Ionescu A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1955-1964. PubMed ID: 34506286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models.
    Yang S; Laudanski A; Li Q
    Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy.
    Carcreff L; Paraschiv-Ionescu A; Gerber CN; Newman CJ; Armand S; Aminian K
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Gaussian process regression model for walking speed estimation using a head-worn IMU.
    Zihajehzadeh S; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2345-2348. PubMed ID: 29060368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What features of the built environment matter most for mobility? Using wearable sensors to capture real-time outdoor environment demand on gait performance.
    Twardzik E; Duchowny K; Gallagher A; Alexander N; Strasburg D; Colabianchi N; Clarke P
    Gait Posture; 2019 Feb; 68():437-442. PubMed ID: 30594872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking-speed estimation using a single inertial measurement unit for the older adults.
    Byun S; Lee HJ; Han JW; Kim JS; Choi E; Kim KW
    PLoS One; 2019; 14(12):e0227075. PubMed ID: 31877181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of sloped gait: How many steps are needed to reach steady-state walking speed after gait initiation?
    Strutzenberger G; Claußen L; Schwameder H
    Gait Posture; 2021 Jan; 83():167-173. PubMed ID: 33152612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone-Based Assessment of Gait During Straight Walking, Turning, and Walking Speed Modulation in Laboratory and Free-Living Environments.
    Silsupadol P; Prupetkaew P; Kamnardsiri T; Lugade V
    IEEE J Biomed Health Inform; 2020 Apr; 24(4):1188-1195. PubMed ID: 31329138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Gait Strategy and Speed on Regularity of Locomotion Assessed in Healthy Subjects Using a Multi-Sensor Method.
    Rabuffetti M; Scalera GM; Ferrarin M
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models for temporal-spatial parameters in walking with cadence ratio as the independent variable.
    Fang J; Mu Z; Xu Z; Xie L; Yang GY; Zhang Q
    Med Biol Eng Comput; 2019 Apr; 57(4):877-886. PubMed ID: 30465322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.