These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28197852)

  • 21. Common ring motifs in proteins involving asparagine or glutamine amide groups hydrogen-bonded to main-chain atoms.
    Le Questel JY; Morris DG; Maccallum PH; Poet R; Milner-White EJ
    J Mol Biol; 1993 Jun; 231(3):888-96. PubMed ID: 8515458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chiral beta and random fractional deuteration for the determination of protein sidechain conformation by NMR.
    LeMaster DM
    FEBS Lett; 1987 Oct; 223(1):191-6. PubMed ID: 3311809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution.
    O'Hare B; Benesi AJ; Showalter SA
    J Magn Reson; 2009 Oct; 200(2):354-8. PubMed ID: 19648037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.
    Abraham RJ; Griffiths L; Perez M
    Magn Reson Chem; 2014 Jul; 52(7):395-408. PubMed ID: 24824670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A probabilistic approach for validating protein NMR chemical shift assignments.
    Wang B; Wang Y; Wishart DS
    J Biomol NMR; 2010 Jun; 47(2):85-99. PubMed ID: 20446018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 'Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG.
    Merutka G; Dyson HJ; Wright PE
    J Biomol NMR; 1995 Jan; 5(1):14-24. PubMed ID: 7881270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective, in vivo observation of [5-15N]glutamine amide protons in rat brain by 1H-15N heteronuclear multiple-quantum-coherence transfer NMR.
    Kanamori K; Ross BD; Tropp J
    J Magn Reson B; 1995 May; 107(2):107-15. PubMed ID: 7599946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE).
    Gronwald W; Moussa S; Elsner R; Jung A; Ganslmeier B; Trenner J; Kremer W; Neidig KP; Kalbitzer HR
    J Biomol NMR; 2002 Aug; 23(4):271-87. PubMed ID: 12398348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NQ-Flipper: recognition and correction of erroneous asparagine and glutamine side-chain rotamers in protein structures.
    Weichenberger CX; Sippl MJ
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W403-6. PubMed ID: 17478502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Data requirements for reliable chemical shift assignments in deuterated proteins.
    Hitchens TK; McCallum SA; Rule GS
    J Biomol NMR; 2003 Jan; 25(1):11-23. PubMed ID: 12566996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR resonance assignments of sparsely labeled proteins: amide proton exchange correlations in native and denatured states.
    Nkari WK; Prestegard JH
    J Am Chem Soc; 2009 Apr; 131(14):5344-9. PubMed ID: 19317468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH dependence of amide chemical shifts in natively disordered polypeptides detects medium-range interactions with ionizable residues.
    Pujato M; Bracken C; Mancusso R; Cataldi M; Tasayco ML
    Biophys J; 2005 Nov; 89(5):3293-302. PubMed ID: 16113108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy.
    Loth K; Pelupessy P; Bodenhausen G
    J Am Chem Soc; 2005 Apr; 127(16):6062-8. PubMed ID: 15839707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asparagine and glutamine side-chain conformation in solution and crystal: a comparison for hen egg-white lysozyme using residual dipolar couplings.
    Higman VA; Boyd J; Smith LJ; Redfield C
    J Biomol NMR; 2004 Nov; 30(3):327-46. PubMed ID: 15754058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical shift assignments of calmodulin under standard conditions at neutral pH.
    Bej A; Ames JB
    Biomol NMR Assign; 2022 Oct; 16(2):213-218. PubMed ID: 35460468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using
    Okazaki H; Matsuo N; Tenno T; Goda N; Shigemitsu Y; Ota M; Hiroaki H
    Protein Sci; 2018 Oct; 27(10):1821-1830. PubMed ID: 30098073
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stereospecific assignments of protein NMR resonances based on the tertiary structure and 2D/3D NOE data.
    Pristovsek P; Franzoni L
    J Comput Chem; 2006 Apr; 27(6):791-7. PubMed ID: 16526035
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative study of the effects of chemical shift tolerances and rates of SA cooling on structure calculation from automatically assigned NOE data.
    Fossi M; Oschkinat H; Nilges M; Ball LJ
    J Magn Reson; 2005 Jul; 175(1):92-102. PubMed ID: 15949752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1H NMR studies on the CuA center of nitrous oxide reductase from Pseudomonas stutzeri.
    Holz RC; Alvarez ML; Zumft WG; Dooley DM
    Biochemistry; 1999 Aug; 38(34):11164-71. PubMed ID: 10460173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NQ-Flipper: validation and correction of asparagine/glutamine amide rotamers in protein crystal structures.
    Weichenberger CX; Sippl MJ
    Bioinformatics; 2006 Jun; 22(11):1397-8. PubMed ID: 16595557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.