These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28198444)

  • 1. Four reversible and reconfigurable structures for three-phase emulsions: extended morphologies and applications.
    Ge XH; Geng YH; Zhang QC; Shao M; Chen J; Luo GS; Xu JH
    Sci Rep; 2017 Feb; 7():42738. PubMed ID: 28198444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced Reconfiguration of Complex Emulsions Using a Photoresponsive Surfactant.
    Jia K; Zhang X; Zhang L; Yu L; Wu Y; Li L; Mai Y; Liao B
    Langmuir; 2018 Sep; 34(38):11544-11552. PubMed ID: 30184432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamically reconfigurable complex emulsions via tunable interfacial tensions.
    Zarzar LD; Sresht V; Sletten EM; Kalow JA; Blankschtein D; Swager TM
    Nature; 2015 Feb; 518(7540):520-4. PubMed ID: 25719669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device.
    Xu JH; Chen R; Wang YD; Luo GS
    Lab Chip; 2012 May; 12(11):2029-36. PubMed ID: 22508390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex Emulsions by Extracting Water from Homogeneous Solutions Comprised of Aqueous Three-Phase Systems.
    Cui C; Zeng C; Wang C; Zhang L
    Langmuir; 2017 Nov; 33(44):12670-12680. PubMed ID: 29022717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional polymeric microparticles engineered from controllable microfluidic emulsions.
    Wang W; Zhang MJ; Chu LY
    Acc Chem Res; 2014 Feb; 47(2):373-84. PubMed ID: 24199893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective and Reversible Switching of Emulsions by an Acid/Base-Mediated Redox Reaction.
    Zhang Y; Chen H; Liu X; Zhang Y; Fang Y; Qin Z
    Langmuir; 2016 Dec; 32(51):13728-13735. PubMed ID: 27958741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.
    Thelen J; Dickey MD; Ward T
    Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally Tunable Pickering Emulsions Stabilized by Carbon-Dot-Incorporated Core-Shell Nanospheres with Fluorescence "On-Off" Behavior.
    Chen J; Zhu C; Yang Z; Wang P; Yue Y; Kitaoka T
    Langmuir; 2018 Jan; 34(1):273-283. PubMed ID: 29227679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ formed Mg(OH)2 nanoparticles as pH-switchable stabilizers for emulsions.
    Tan J; Wang J; Wang L; Xu J; Sun D
    J Colloid Interface Sci; 2011 Jul; 359(1):155-62. PubMed ID: 21514594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.
    Das D; Phan DT; Zhao Y; Kang Y; Chan V; Yang C
    Electrophoresis; 2017 Mar; 38(5):645-652. PubMed ID: 27935087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibrium and nonequilibrium states in microfluidic double emulsions.
    Pannacci N; Bruus H; Bartolo D; Etchart I; Lockhart T; Hennequin Y; Willaime H; Tabeling P
    Phys Rev Lett; 2008 Oct; 101(16):164502. PubMed ID: 18999673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.
    Toprakcioglu Z; Levin A; Knowles TPJ
    Biomacromolecules; 2017 Nov; 18(11):3642-3651. PubMed ID: 28959882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-oil Janus emulsions: microfluidic synthesis and morphology design.
    Ge XH; Huang JP; Xu JH; Chen J; Luo GS
    Soft Matter; 2016 Apr; 12(14):3425-30. PubMed ID: 26947622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic design of complex emulsions.
    Choi CH; Kim J; Nam JO; Kang SM; Jeong SG; Lee CS
    Chemphyschem; 2014 Jan; 15(1):21-9. PubMed ID: 24399799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique crystal morphologies of glycine grown from octanoic acid-in-water emulsions.
    Nicholson CE; Cooper SJ; Jamieson MJ
    J Am Chem Soc; 2006 Jun; 128(24):7718-9. PubMed ID: 16771468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle self-assembly at ionic liquid-based interfaces.
    Frost DS; Nofen EM; Dai LL
    Adv Colloid Interface Sci; 2014 Apr; 206():92-105. PubMed ID: 24230971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microenvironment of double emulsions in rectangular microchannels.
    Ma S; Sherwood JM; Huck WT; Balabani S
    Lab Chip; 2015 May; 15(10):2327-34. PubMed ID: 25900541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.