BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28198624)

  • 1. Browning Potential of C
    Haase PT; Kanzler C; Hildebrandt J; Kroh LW
    J Agric Food Chem; 2017 Mar; 65(9):1924-1931. PubMed ID: 28198624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.
    Kanzler C; Schestkowa H; Haase PT; Kroh LW
    J Agric Food Chem; 2017 Oct; 65(40):8957-8965. PubMed ID: 28880081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlating changes that occur in chemical properties with the generation of antioxidant capacity in different sugar-amino acid Maillard reaction models.
    Chen XM; Kitts DD
    J Food Sci; 2011 Aug; 76(6):C831-7. PubMed ID: 21623789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and determination of 3-deoxyglucosone and glucosone in carbohydrate-rich foods.
    Ruiz-Matute AI; Castro Vazquez L; Hernández-Hernández O; Sanz ML; Martínez-Castro I
    J Sci Food Agric; 2015 Sep; 95(12):2424-30. PubMed ID: 25331228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Deoxyglucosone: A New C
    Bruhns P; Kaufmann M; Koch T; Kroh LW
    J Agric Food Chem; 2018 Nov; 66(44):11806-11811. PubMed ID: 30336014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars.
    Usui T; Yanagisawa S; Ohguchi M; Yoshino M; Kawabata R; Kishimoto J; Arai Y; Aida K; Watanabe H; Hayase F
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2465-72. PubMed ID: 17928698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of glucose: reinvestigation of reactive alpha-Dicarbonyl compounds.
    Gobert J; Glomb MA
    J Agric Food Chem; 2009 Sep; 57(18):8591-7. PubMed ID: 19711949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant capacity of 1-deoxy-D-erythro-hexo-2,3-diulose and D-arabino-hexo-2-ulose.
    Kanzler C; Haase PT; Kroh LW
    J Agric Food Chem; 2014 Apr; 62(13):2837-44. PubMed ID: 24605798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of α-Dicarbonyls from Dairy Related Carbohydrates with and without Nα-Acetyl-l-Lysine during Incubation at 40 and 50 °C.
    Zhang W; Poojary MM; Olsen K; Ray CA; Lund MN
    J Agric Food Chem; 2019 Jun; 67(22):6350-6358. PubMed ID: 31083944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C.
    Hrynets Y; Ndagijimana M; Betti M
    J Agric Food Chem; 2015 Jul; 63(27):6249-61. PubMed ID: 26114422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Sodium Chloride on α-Dicarbonyl Compound and 5-Hydroxymethyl-2-furfural Formations from Glucose under Caramelization Conditions: A Multiresponse Kinetic Modeling Approach.
    Kocadağlı T; Gökmen V
    J Agric Food Chem; 2016 Aug; 64(32):6333-42. PubMed ID: 27477785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-deoxypentosulose: an alpha-dicarbonyl compound predominating in nonenzymatic browning of oligosaccharides in aqueous solution.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2002 Mar; 50(6):1659-64. PubMed ID: 11879053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of sugar degradation products with α-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS.
    Gensberger S; Glomb MA; Pischetsrieder M
    J Agric Food Chem; 2013 Oct; 61(43):10238-45. PubMed ID: 23452313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the non-enzymatic browning of lotus rhizome juice during sterilization mediated by 1,2-dicarboxyl and heterocyclic compounds.
    Sun X; Li J; Yan S
    J Sci Food Agric; 2024 Jan; 104(1):362-372. PubMed ID: 37598410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the browning reaction in a sorbitol/glycine model: Formation and degradation of precursors, glucose and α-dicarbonyl compounds during heating.
    Huang X; Feng T; Cui H; Xia S; Zhu H
    Food Res Int; 2024 Feb; 177():113870. PubMed ID: 38225137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations on the Reaction of C3 and C6 α-Dicarbonyl Compounds with Hydroxytyrosol and Related Compounds under Competitive Conditions.
    Navarro M; Atzenbeck L; Pischetsrieder M; Morales FJ
    J Agric Food Chem; 2016 Aug; 64(32):6327-32. PubMed ID: 27476321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of oligosaccharides in nonenzymatic browning by formation of alpha-dicarbonyl compounds via a "peeling off" mechanism.
    Hollnagel A; Kroh LW
    J Agric Food Chem; 2000 Dec; 48(12):6219-26. PubMed ID: 11312795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.
    Kocadağlı T; Gökmen V
    Food Chem; 2016 Nov; 211():892-902. PubMed ID: 27283710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the spectrum of α-dicarbonyl compounds in vivo.
    Henning C; Liehr K; Girndt M; Ulrich C; Glomb MA
    J Biol Chem; 2014 Oct; 289(41):28676-88. PubMed ID: 25164824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold non-enzymatic browning of glucosamine in the presence of metmyoglobin induces glucosone and deoxymyoglobin formation.
    Zhao X; Hrynets Y; Betti M
    Food Chem; 2020 Feb; 305():125504. PubMed ID: 31606691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.