BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28198626)

  • 1. Molecular Origin and Self-Assembly of Fluorescent Carbon Nanodots in Polar Solvents.
    Sharma A; Gadly T; Neogy S; Ghosh SK; Kumbhakar M
    J Phys Chem Lett; 2017 Mar; 8(5):1044-1052. PubMed ID: 28198626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent Effects: A Signature of J- and H-Aggregate of Carbon Nanodots in Polar Solvents.
    Anjali Devi JS; Aparna RS; Anjana RR; Nebu J; Anju SM; George S
    J Phys Chem A; 2019 Aug; 123(34):7420-7429. PubMed ID: 31373812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation-Dependent Photoluminescence from Single-Carbon Dots.
    van Dam B; Nie H; Ju B; Marino E; Paulusse JMJ; Schall P; Li M; Dohnalová K
    Small; 2017 Dec; 13(48):. PubMed ID: 29120084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of aggregation configuration of molecular fluorophore CZA on photoluminescence properties of carbon dots.
    Shi W; Guan L; Ren X; Zhang J; Luo T; Liu C; Lan Y; Chen Z; Chen X; Li X
    J Colloid Interface Sci; 2024 Apr; 659():213-224. PubMed ID: 38176231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplified luminescence quenching effect upon binding of nitrogen doped carbon nanodots to transition metal ions.
    Anjali Devi JS; Aparna RS; Anjana RR; Vijila NS; Jayakrishna J; George S
    Photochem Photobiol Sci; 2020 Feb; 19(2):207-216. PubMed ID: 31960873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation Wavelength Independence: Toward Low-Threshold Amplified Spontaneous Emission from Carbon Nanodots.
    Zhang Y; Hu Y; Lin J; Fan Y; Li Y; Lv Y; Liu X
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25454-60. PubMed ID: 27617695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the Excitation-Dependent Fluorescence of Carbon Dots.
    Divya S; Narayan S; Ainavarapu SRK; Khushalani D
    Chemphyschem; 2019 Apr; 20(7):984-990. PubMed ID: 30723990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission.
    Gude V; Das A; Chatterjee T; Mandal PK
    Phys Chem Chem Phys; 2016 Oct; 18(40):28274-28280. PubMed ID: 27711558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H-Bonding controls the emission properties of functionalized carbon nano-dots.
    Mukherjee S; Prasad E; Chadha A
    Phys Chem Chem Phys; 2017 Mar; 19(10):7288-7296. PubMed ID: 28239716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios.
    Wang J; Zhang P; Huang C; Liu G; Leung KC; Wáng YX
    Langmuir; 2015 Jul; 31(29):8063-73. PubMed ID: 26135003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties.
    Zhang Y; He J
    Phys Chem Chem Phys; 2015 Aug; 17(31):20154-9. PubMed ID: 26177698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Properties of Tricarboxylic Acid-Derived Carbon Dots.
    Tomskaya A; Asanov IP; Yushina I; Rakhmanova MI; Smagulova S
    ACS Omega; 2022 Dec; 7(48):44093-44102. PubMed ID: 36506125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color-switchable, emission-enhanced fluorescence realized by engineering C-dot@C-dot nanoparticles.
    Guo Z; Zhang Z; Zhang W; Zhou L; Li H; Wang H; Andreazza-Vignolle C; Andreazza P; Zhao D; Wu Y; Wang Q; Zhang T; Jiang K
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20700-8. PubMed ID: 25408428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining.
    Shi L; Li Y; Li X; Wen X; Zhang G; Yang J; Dong C; Shuang S
    Nanoscale; 2015 Apr; 7(16):7394-401. PubMed ID: 25826612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating the Structure of Carbon Dots via Crystalline π-Aggregated Organic Nanodots Prepared by Kinetically Trapped Self-Assembly.
    Yang J; Guo L; Yong X; Zhang T; Wang B; Song H; Zhao YS; Hou H; Yang B; Ding J; Lu S
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202207817. PubMed ID: 35731186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites.
    Sun M; Qu S; Hao Z; Ji W; Jing P; Zhang H; Zhang L; Zhao J; Shen D
    Nanoscale; 2014 Nov; 6(21):13076-81. PubMed ID: 25247822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prominence of fusion temperature and engineering heteroatoms on multifarious emissive shifts in carbon dots.
    Velusamy J; Ramos-Ortiz G; Rodríguez M; Hernández-Cruz O; Ponce A
    J Colloid Interface Sci; 2018 Oct; 528():237-247. PubMed ID: 29857254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent penetration of carbon dots inside the ferritin nanocages: evidence for the quantum confinement effect in carbon dots.
    Bhattacharya A; Chatterjee S; Prajapati R; Mukherjee TK
    Phys Chem Chem Phys; 2015 May; 17(19):12833-40. PubMed ID: 25906758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence.
    Kumar GS; Roy R; Sen D; Ghorai UK; Thapa R; Mazumder N; Saha S; Chattopadhyay KK
    Nanoscale; 2014 Mar; 6(6):3384-91. PubMed ID: 24531861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots.
    Wang B; Mu Y; Yin H; Yang Z; Shi Y; Li J
    Nanoscale; 2018 Jun; 10(22):10650-10656. PubMed ID: 29845155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.