BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28198675)

  • 1. Predicting disease-related genes using integrated biomedical networks.
    Peng J; Bai K; Shang X; Wang G; Xue H; Jin S; Cheng L; Wang Y; Chen J
    BMC Genomics; 2017 Jan; 18(Suppl 1):1043. PubMed ID: 28198675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Disease Related microRNA Based on Similarity and Topology.
    Chen Z; Wang X; Gao P; Liu H; Song B
    Cells; 2019 Nov; 8(11):. PubMed ID: 31703479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization.
    Zhao ZQ; Han GS; Yu ZG; Li J
    Comput Biol Chem; 2015 Aug; 57():21-8. PubMed ID: 25736609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network.
    Le DH; Pham VH
    BMC Syst Biol; 2017 Jun; 11(1):61. PubMed ID: 28619054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network-based association analysis to infer new disease-gene relationships using large-scale protein interactions.
    Suratanee A; Plaimas K
    PLoS One; 2018; 13(6):e0199435. PubMed ID: 29949603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network.
    Zhou M; Wang X; Li J; Hao D; Wang Z; Shi H; Han L; Zhou H; Sun J
    Mol Biosyst; 2015 Mar; 11(3):760-9. PubMed ID: 25502053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NTSMDA: prediction of miRNA-disease associations by integrating network topological similarity.
    Sun D; Li A; Feng H; Wang M
    Mol Biosyst; 2016 Jun; 12(7):2224-32. PubMed ID: 27153230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPEC: a Cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection.
    Le DH; Kwon YK
    Comput Biol Chem; 2012 Apr; 37():17-23. PubMed ID: 22430954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DGHNE: network enhancement-based method in identifying disease-causing genes through a heterogeneous biomedical network.
    He B; Wang K; Xiang J; Bing P; Tang M; Tian G; Guo C; Xu M; Yang J
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36151744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.
    Zhou Y; Liu Y; Li K; Zhang R; Qiu F; Zhao N; Xu Y
    PLoS One; 2015; 10(3):e0116095. PubMed ID: 25803614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The integration of weighted human gene association networks based on link prediction.
    Yang J; Yang T; Wu D; Lin L; Yang F; Zhao J
    BMC Syst Biol; 2017 Jan; 11(1):12. PubMed ID: 28137253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.
    Shi H; Zhang G; Zhou M; Cheng L; Yang H; Wang J; Sun J; Wang Z
    PLoS One; 2016; 11(2):e0148521. PubMed ID: 26849207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NIDM: network impulsive dynamics on multiplex biological network for disease-gene prediction.
    Xiang J; Zhang J; Zheng R; Li X; Li M
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for identifying potential disease-related miRNAs via a disease-miRNA-target heterogeneous network.
    Ding L; Wang M; Sun D; Li A
    Mol Biosyst; 2017 Oct; 13(11):2328-2337. PubMed ID: 28920619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Drug Repositioning with Random Walk on a Heterogeneous Network.
    Luo H; Wang J; Li M; Luo J; Ni P; Zhao K; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1890-1900. PubMed ID: 29994051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Similarity Method Based on a Two-tier Random Walk for the Prediction of microRNA-Disease Association.
    Chen M; Liao B; Li Z
    Sci Rep; 2018 Apr; 8(1):6481. PubMed ID: 29691434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
    Cheng L; Jiang Y; Ju H; Sun J; Peng J; Zhou M; Hu Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):919. PubMed ID: 29363423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-based prediction and knowledge mining of disease genes.
    Carson MB; Lu H
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.